Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036225

RESUMO

Bioaccumulation studies in fish mark the initial phase of assessing the risk of chemical exposure to biota and human populations. The Iguaçu River boasting a diverse endemic ichthyofauna, is grappling with the repercussions of human activities. This study delved into the bioaccumulation of micropollutants, the early-warning effects on Rhamdia quelen and Oreochomis niloticus in the Segredo Reservoir (HRS) and the potential risk of human exposure. Two groups of caged fish in three sites of the reservoir were exposed during the autumn-winter and spring-summer, while a third group (O. niloticus) underwent a twelve-month exposure, and inorganic and organic chemicals analysis in water, sediment, and biota. Additionally, metallothionein expression and genotoxicity were employed as biomarkers. PAHs, PCBs, Al, Cu, Fe, and As in water and DDTs, Cu, Zn, and As in sediment surpassed the thresholds set by Brazilian regulations, where DDT exhibited bioaccumulation in muscle, alongside metals in liver, kidney, gills, and muscle tissues. R. quelen showed metallothionein expression whereas DNA damage and NMA frequencies were elevated in target organs and in brain and erythrocytes of O. niloticus during summer. In this species the DNA damage in liver was remarkable after twelve months. Target Hazard Quotients and Cancer Risk values shedding light on the vulnerability of both children and adults. The reservoir's conditions led to heightened sensitivity to micropollutants for R. quelen species. The data presented herein provides decision-makers with pertinent insights to facilitate effective management and conservation initiatives within the Iguaçu Basin.


Assuntos
Peixes-Gato , Poluentes Ambientais , Animais , Criança , Humanos , Rios , Brasil , Monitoramento Ambiental , Bioacumulação , Água , Metalotioneína
2.
Artigo em Inglês | MEDLINE | ID: mdl-38037232

RESUMO

The degradation of water resources available for human consumption is increasing with the continuous release of chemicals into aquatic environments and their inefficient removal in wastewater treatment. Several watersheds in Brazil, such as the Iguaçu River, are affected by multiple sources of pollution and lack information about their pollution status. The Iguaçu River basin (IRB) has great socioeconomic and environmental relevance to both the supply of water resources and its considerable hydroelectric potential, as well as for the high rate of endemism of its ichthyofauna. Also, the IRB is home to large conservation units, such as the Iguaçu National Park, recognized by UNESCO as a natural World Heritage Site. Thus, this article discusses the chemical pollution in the IRB approaching: (i) the main sources of pollution; (ii) the occurrence of inorganic and organic micropollutants; (iii) the available ecotoxicological data; and (iv) the socioeconomic impacts in three regions of the upper, middle, and lower IRB. Different studies have reported relevant levels of emerging contaminants, persistent organic pollutants, toxic metals, and polycyclic aromatic hydrocarbons detected in the water and sediment samples, especially in the upper IRB region, associated with domestic and industrial effluents. Additionally, significant concentrations of pesticides and toxic metals were also detected in the lower IRB, revealing that agricultural practices are also relevant sources of chemicals for this watershed. More recently, studies indicated an association between fish pathologies and the detection of micropollutants in the water and sediments in the IRB. The identification of the main sources of pollutants, associated with the distribution of hazardous chemicals in the IRB, and their potential effects on the biota, as described in this review, represent an important strategy to support water management by public authorities for reducing risks to the local endemic biodiversity and exposed human populations. Integr Environ Assess Manag 2024;00:1-26. © 2023 SETAC.

3.
Metabolites ; 13(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755255

RESUMO

Vaccination programs in the first years of a child's life are effective and extremely important strategies for the successful eradication of diseases. However, as no intervention is without risks, the metal-based components of some vaccines, such as thimerosal (TMS), a preservative composed of ethylmercury, and aluminum (Al), have begun to generate distrust on the part of the population. Therefore, this study evaluated the effects of exposure to thimerosal and aluminum hydroxide (alone or in mixture) on Danio rerio (zebrafish) specimens. The fish were exposed to thimerosal and/or aluminum hydroxide intraperitoneally. The liver, kidney, and brain were removed for a biochemical biomarker analysis, histopathological analysis, and metal quantification. As a result, we observed changes in the activity of the analyzed enzymes (SOD, GST, GPx) in the kidney and brain of the zebrafish, a reduction in GSH levels in all analyzed tissues, and a reduction in MT levels in the kidney and liver as well as in the brain. Changes in AChE enzyme activity were observed. The biochemical results corroborate the changes observed in the lesion index and histomorphology sections. We emphasize the importance of joint research on these compounds to increase the population's safety against their possible toxic effects.

4.
Chemosphere ; 336: 139216, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37321459

RESUMO

Ciprofloxacin (CIP) is an antibiotic commonly used in human and veterinary medicine. It is present in the aquatic environment, but we still know very little about its effect on non-targeted organisms. This study aimed to evaluate the effects of long-term exposure to environmental CIP concentrations (1, 10, and 100 µg.L-1) in males and females of Rhamdia quelen. After 28 days of exposure, we collected the blood for the analysis of hematological and genotoxic biomarkers. Additionally, we measured 17 ß-estradiol and 11 keto-testosterone levels. After the euthanasia, we collected the brain and the hypothalamus to analyze acetylcholinesterase (AChE) activity and neurotransmitters, respectively. The liver and gonads were assessed for biochemical, genotoxic, and histopathological biomarkers. At 100 µg.L-1 CIP, we observed genotoxicity in the blood, nuclear morphological changes, apoptosis, leukopenia, and a reduction of AChE in the brain. In the liver was observed oxidative stress and apoptosis. At 10 µg.L-1 CIP, leukopenia, morphological changes, and apoptosis were presented in the blood and a reduction of AChE in the brain. Apoptosis, leukocyte infiltration, steatosis, and necrosis occurred in the liver. Even at the lowest concentration (1 µg.L-1), adverse effects such as erythrocyte and liver genotoxicity, hepatocyte apoptosis, oxidative stress, and a decrease in somatic indexes were observed. The results showed the importance of monitoring CIP concentrations in the aquatic environment that cause sublethal effects on fish.


Assuntos
Peixes-Gato , Leucopenia , Poluentes Químicos da Água , Animais , Masculino , Humanos , Feminino , Ciprofloxacina/farmacologia , Acetilcolinesterase , Fígado , Biomarcadores , Poluentes Químicos da Água/toxicidade
5.
Methods Protoc ; 6(2)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104020

RESUMO

A histological examination is an important tool in embryology, developmental biology, and correlated areas. Despite the amount of information available about tissue embedding and different media, there is a lack of information regarding best practices for embryonic tissues. Embryonic tissues are considered fragile structures, usually small in size, and frequently challenging to position correctly in media for the subsequent histological steps. Here, we discuss the embedding media and procedures that provided us with appropriate preservation of tissue and easier orientation of embryos at early development. Fertilized Gallus gallus eggs were incubated for 72 h, collected, fixed, processed, and embedded with paraplast, polyethylene glycol (PEG), or historesin. These resins were compared by the precision of tissue orientation, the preview of the embryos in the blocks, microtomy, contrast in staining, preservation, average time, and cost. Paraplast and PEG did not allow correct embryo orientation, even with agar-gelatin pre-embedded samples. Additionally, structural maintenance was hindered and did not allow detailed morphological assessment, presenting tissue shrinkage and disruption. Historesin provided precise tissue orientation and excellent preservation of structures. Assessing the performance of the embedding media contributes significantly to future developmental research, optimizing the processing of embryo specimens and improving results.

6.
Environ Sci Pollut Res Int ; 30(14): 41848-41863, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639588

RESUMO

Phytoremediation has been a potential solution for the removal of pharmaceuticals from water. Here, we evaluated the toxicological safety of ciprofloxacin-contaminated water treated by 96 h with Salvinia molesta. The Neotropical catfish Rhamdia quelen was used as a model, and the potential of the phytoremediation technique for mitigating the drug accumulation in the fishes was also studied. Fish exposed to Cipro (1 and 10 µg·L-1) in untreated water showed toxic responses (alteration of hematological, genotoxicity, biochemical, and histopathological biomarkers) and accumulated Cipro in their muscles at concentrations high for human consumption (target hazardous quotient > 1). Fish exposed to water treated with S. molesta showed no toxic effect and no accumulation of Cipro in their tissues. This must be related to the fact that S. molesta removed up to 97% of Cipro from the water. The decrease in Cipro concentrations after water treatment with S. molesta not only prevented the toxic effects of Cipro on R. quelen fish but also prevented the antimicrobial accumulation in fish flesh, favouring safe consumption by humans. For the very first time, we showed the potential of phytoremediation as an efficiently nature-based solution to prevent environmental toxicological effects of antimicrobials to nontarget organisms such as fish and humans. The use of S. molesta for Cipro-removal from water is a green technology to be considered in the combat against antimicrobial resistance.


Assuntos
Peixes-Gato , Traqueófitas , Poluentes Químicos da Água , Animais , Humanos , Ciprofloxacina , Biodegradação Ambiental , Peixes-Gato/fisiologia , Poluentes Químicos da Água/análise
7.
Environ Toxicol Pharmacol ; 97: 104034, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36496183

RESUMO

PBDEs are toxic, lipophilic, hydrophobic, and persistent artificial chemicals, characterized by high physical and chemical stability. Although PBDEs are known to disturb hormone signaling, many effects of 2,2',4,4',5 - pentain polybrominated diphenyl ethers (BDE-99) in fish remain unclear. The current study investigates the effects of BDE-99 in Oreochromis niloticus where sixty-four juvenile fish were orally exposed to 0.294, 2.94, 29.4 ng g-1 of BDE-99, every 10 days, during 80 days. The results showed histopathological findings in liver and kidney, increasing acetylcholinesterase activity in muscle, disturbs in the antioxidant system in liver and brain and decreasing the plasmatic levels of vitellogenin in females. According to multivariate analysis (IBR), the higher doses are related to the interaction of oxidative and non-oxidative enzymes. The present study provided evidence of deleterious effects after sub-chronic exposure of BDE 99 to O. niloticus, increasing the knowledge about its risk of exposure in fish.


Assuntos
Ciclídeos , Retardadores de Chama , Bifenil Polibromatos , Animais , Feminino , Éteres Difenil Halogenados/toxicidade , Acetilcolinesterase , Retardadores de Chama/toxicidade
8.
Ecotoxicology ; 32(1): 12-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36547786

RESUMO

Aquatic biota is increasingly being exposed to chemical pollutants due to human activities and the relationship between the level of environmental pollution and fish reproduction is a continuously ongoing issue. The vitellogenin (Vtg) protein synthesis can be induced in the liver of juvenile and male fish after stimulation of the estrogen receptor and therefore, Vtg has been used as a biomarker of xenoestrogen exposure in several fish species. The current study reported the first physicochemical characterization of Vtg from Oreochromis niloticus. Adult male fish were exposed to 17α-ethinylestradiol for Vtg induction. Purified vitellogenin from plasma showed low stability at 25 and 4 °C in saline conditions, and good stability in acidic (low pH) or in heated conditions. The 3D modeling provided useful information on the structure of O. niloticus Vtg showing conserved structural features. According to bioinformatics and experimental results, there are important structural differences between the two chemical forms of Vtg (VtgAb and VtgC) in a phylogenetic context. The present results add information about the development of ecotoxicological immunoassays to study the endocrine disruption in O. niloticus improving the Vtg performance as a biomarker of reproduction in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Masculino , Biomarcadores/metabolismo , Etinilestradiol/toxicidade , Filogenia , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise , Proteínas de Peixes
9.
Environ Sci Pollut Res Int ; 30(10): 27996-28009, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385344

RESUMO

The presence of phthalates constitutes a risk to the health of aquatic environments and organisms. This work aimed to evaluate the toxic effects of di-iso-pentyl-phthalate (DiPeP) at environmentally relevant concentrations of 5, 25, and 125 µg/L in Danio rerio after subchronic exposure for 14 days. DiPeP altered the antioxidant system in the liver (125 µg/L), intestine (25 µg/L), brain, and gills in all concentrations tested. In animals exposed to 125 µg/L, DNA damage was identified in the gills. In addition, loss of cell boundary of hepatocytes, vascular congestion, necrosis in the liver, and presence of immune cells in the intestinal lumen were observed. Erythrocytic nuclear alterations in the blood occurred in animals exposed to 25 µg/L. DiPeP was quantified in muscle tissue at all exposure concentrations, appearing in a concentration-dependent manner. Contaminants such as DiPeP will still be used for a long time, mainly by industries, being a challenge for industry versus environmental health.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Ácidos Ftálicos/toxicidade , Fígado , Modelos Teóricos , Poluentes Químicos da Água/toxicidade
10.
Environ Monit Assess ; 194(7): 497, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695983

RESUMO

Chronic exposure to multiple pollutants affects aquatic organisms, even at low concentrations, and can impair fishery activities along marine coastlines. The bioavailability of toxic metals and the presence of metals and polycyclic aromatic hydrocarbons (PAHs) in both water and sediment can explain the worst-case scenario of fish health and fishery production decline along the Algeria coastline. The hepatosomatic index (HIS), gonadosomatic index (GSI), and condition factor (K) in the studied species from the Algiers, Bou Ismail, and Zemmouri bays are the first indicators of the poor environmental health along the studied region. These findings could be explained by the bioavailability of Zn, Cu, Cr, Mn, Hg, and Ni and the detection of PAHs in the water and sediment of these bays. Additionally, histopathological damage in the liver is described in sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus), and sardinelle (Sardinella aurita) highlights the current study in the investigation of the risk of exposure to biota or human populations. The occurrence of permanent lesions in the livers of fish impairs organ function and increases the incidence of diseases affecting the fish community. Furthermore, the factor analysis with principal component analysis (FA/PCA) dataset explains the physiological disturbances described in all studied species. These findings revealed that Zemmouri bay is the most affected by chemicals, suggesting that S. pilchardus is the most sensitive species. Finally, the results showed that the bioavailability of chemicals present in the studied bays confirms poor water quality, which can explain the decrease in fishery production along the Algerian Coastline.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Argélia , Animais , Baías , Monitoramento Ambiental/métodos , Pesqueiros , Peixes , Mar Mediterrâneo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Fish Shellfish Immunol ; 123: 61-74, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227880

RESUMO

As the earliest known vertebrate possessing a complete immune system, teleost fish played an important role in the evolution of this system. The complement system is an ancient defense mechanism present in invertebrates and vertebrates. In teleost fish the complement system is formed by more than 35 circulating proteins, or found at the cell surface. This system is activated by three pathways: alternative, classical and lectin, generating functions such as the opsonization, lysis and modulation of the innate and adaptive immune responses. The complement system is an important immunological indicator that can be used to study and monitor the effects of environmental, nutritional, and infectious processes. The Nile tilapia (Oreochromis niloticus) is a teleost fish of great economic interest due to its characteristics of easy cultivation, high growth rates, and tolerance to adverse environmental conditions. In addition, Nile tilapia is an excellent model for ecotoxicological studies, however, there are very few studies reporting the performance of the complement system in this species after exposure to environmental pollutants. The aim of this review is to gather recent studies with to address the molecular and functional characterizations of the complement system in Nile tilapia and provide new insights about this defense mechanism. Looking to the future, we believe that the complement system analysis in Tilapia can be used as a biomarker of water quality and the general health status of fish.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Animais , Proteínas do Sistema Complemento/metabolismo , Proteínas de Peixes , Lectinas/metabolismo
12.
Environ Pollut ; 300: 118935, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131333

RESUMO

Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 µg.L-1) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 µg.L-1. In addition, at 100 µg.L-1, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Peixes-Gato/fisiologia , Ciprofloxacina/toxicidade , Brânquias , Fígado , Poluentes Químicos da Água/toxicidade
13.
Chemosphere ; 291(Pt 1): 132730, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743868

RESUMO

Pesticides reach aquatic ecosystems and interact with various targets in cells of fish and other living organisms. Toxicity originates during the metabolization process, which may produce toxic metabolites or reactive oxygen species (ROS). Ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) activities, and levels of reduced glutathione (GSH) indicate toxicants interacted with drug-metabolizing and antioxidant systems, i.e., they are biomarkers of biotransformation and oxidative stress. We meta-analytically quantified the impact of pesticides on the mean response and variability of these biomarkers. Our goals were to verify (i) the overall effect of pesticides on oxidative stress and biotransformation, and how each biomarker respond to exposure; (ii) how the life stage of fish (juvenile and adult) influence biomarkers variability and mean activity; (iii) to what extent fish sex (male, female or mixed-sex groups) modify pesticides toxicity; (iv) how different classes of pesticides, and the combination of their concentration and time of exposure, affect each biomarker. Overall, pesticides induced oxidative stress and the biotransformation system. Regardless of life stage, EROD mean activity increased significantly. In exposed juveniles, CAT and GST variability decreased and increased, respectively. CAT mean activity was higher in females, while EROD and GST activities increased in males after pesticide exposure. Organophosphorus (OPs) and organochlorine insecticides, along with imidazole and triazole fungicides, affected biomarkers the most, however the combined effect of concentration and time of exposure of OPs was not detected. Notably, imidazoles and triazoles classes increased EROD by more than 100%. Additionally, we identified research gaps, such as the lack of effect estimates of relevant pesticides on EROD (e.g., pyrethroids and neonicotinoids) and the small number of studies evaluating GSH on female fish. Future researchers may use these gaps as a guide towards enhanced experimental designs and, consequently, a better understanding of pesticide toxic effects on fish.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Biotransformação , Catalase/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Ecossistema , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Masculino , Estresse Oxidativo , Praguicidas/toxicidade , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Environ Res ; 195: 110308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33068573

RESUMO

The Estuarine-Lagoon Complex of Iguape-Cananéia (ELCIC), a Marine Protected Area (MPA) in Brazil, was the focus of this study that aimed to relate external levels of exposure to contaminants to toxic effects on Gobioides broussonnetii fish. Different anthropogenic contaminants such as metals, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs) were analyzed in the sediments; and biochemical, histopathological and genotoxicity biomarkers evaluated in fish; in two different seasons at three sites of the estuarine region. Higher contamination of the sediments was observed near the main urban center (Iguape city - IG). Metal concentrations were considered low to moderate, while PAHs concentrations were considered low. The concentrations of PPCPs increased due to the anthropogenic presence and were higher near IG and the Cananéia Island (CI). Contributions from historical mining, agriculture, nautical activities, oil, sewage and waste disposal, biomass and fossil fuels combustion were identified. Higher concentrations of metals and PPCPs were observed during the cold-dry season, suggesting influences of the lower hydrodynamics during the season of lower precipitation. Higher PAHs concentrations occurred in the hot-rainy season, indicating influences of greater human presence in summer. In fish, biological responses followed the same spatial and seasonal pattern. More pronounced changes in antioxidant, biotransformation, histopathological and genotoxic biomarkers were observed in IG and CI. The multivariate analysis and the integrated biomarkers response index (IBR) also evidenced worse environmental conditions in these sites. This result can indicate a negative influence of anthropogenic activities on the contamination of sediments and on the biological responses of fish. This study presented the first ecotoxicological data for the species and suggested that these chronic exposures can cause adverse effects on this fish population. The data contribute to the understanding of local environmental quality and can be applied in the future to the environmental and social management of marine protected areas.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Brasil , Cidades , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Sci Total Environ ; 757: 143829, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33248758

RESUMO

Fish cholinesterases (ChEs) - like acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) - are common biomarkers of environmental contamination due to their sensitivity to a variety of toxicants. To understand pesticide effects on fish ChEs mean activity and variability, we conducted a systematic review and meta-analyses. Our goal was to verify (i) if brain and muscle ChEs responded differently to pesticide exposure; (ii) how fish size and life stage (i.e., juvenile and adult) influence ChEs variability and mean activity; (iii) what type of pesticides (i.e., herbicide, insecticide, and fungicide) has the strongest effect, and if the analytical-grade compounds differ from commercial formulations; (iv) if increasing concentrations combined with prolonged exposure leads to stronger ChEs inhibition; and (v) how each class of pesticide affects these enzymes. We validated ChEs reliability as biomarkers and identified factors influencing their response. Regardless of tissue, BChE response was more variable than AChE, and no difference between their average activity was detected. The size of juvenile fish is an important factor affecting ChEs mean activity and variability, whereas pesticide had no significant effect on adult fish ChEs. Insecticides were stronger inhibitors compared to herbicides and fungicides. Analytical-grade compounds decreased ChEs mean activity to a higher degree than commercial formulations. The combined effect of concentration and time was only significant for fungicides and insecticides. Among classes, organophosphorus insecticides had the strongest effect on ChEs, followed by carbamates, organochlorines, and pyrethroids. Organophosphorus herbicides and oxazolidinones were the only herbicides to decrease ChEs mean activity significantly, and their effects were similar from those of pyrethroids and organochlorines. Additionally, our results identified research gaps, such as the small number of studies on fungicides, neonicotinoids and other relevant pesticides. These findings suggest future directions, which might help researchers identify robust cause-effect relationships between fish ChEs and pesticides.


Assuntos
Inseticidas , Praguicidas , Acetilcolinesterase , Animais , Butirilcolinesterase , Inibidores da Colinesterase , Praguicidas/toxicidade , Reprodutibilidade dos Testes
16.
Environ Sci Pollut Res Int ; 28(8): 9517-9528, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33146826

RESUMO

The diversity of aquatic ecosystems impacted by toxic metals is widely distributed throughout the world. The application of metallothionein (MT) as an early warning sign of metal exposure in freshwater fish is important in biomonitoring, but a more accessible, sensitive, safe, and efficient new methodological strategy is necessary. On this way, a fish MT synthetic gene from Oreochromis aureos was expressed in Escherichia coli to produce polyclonal antibodies against the protein. In the validation assays, these antibodies were able to detect hepatic MT from freshwater fishes Oreochromis niloticus, Pimelodus maculatus, Prochilodus lineatus, and Salminus brasiliensis showing a potential tool for toxic metals biomarker in biomonitoring of aquatic ecosystems. The current results showed the applicability of this molecule in quantitative immunoassays as a sensor for monitoring aquatic environments impacted by toxic metals. Due to the lack of methods focusing on metal pollution diagnostics in aquatic ecosystems, the current proposal revealed a promising tool to applications in biomonitoring programs of water resources, mainly in Brazil where the mining activity is very developed.


Assuntos
Metalotioneína , Poluentes Químicos da Água , Animais , Brasil , Ecossistema , Monitoramento Ambiental , Metalotioneína/genética , Água , Poluentes Químicos da Água/análise
17.
Chemosphere ; 219: 15-27, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30528969

RESUMO

This study combined data of the concentrations of metals, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal hygiene products (PPCPs) in the sediments and the biological responses of the Atherinella brasiliensis fish in two different sites and climate seasons in the Estuarine-Lagoon Complex of Iguape-Cananéia, Southeast Brazil. The presence of metals, PAHs, and PPCPs were observed in the sediments demonstrating the contamination throughout the system with contributions of sewage and residues disposal, oil and combustion of biomass and fossil fuels. Higher contaminations were identified in the point of greater human presence (C - Cananéia City), especially during the cold-dry season. The influence of anthropic activities and variations in the estuarine conditions, such as lower hydrodynamics during the lower rainfall period, were observed. In fish, spatial and seasonal changes in the parameters of oxidative stress and biotransformation, genotoxicity and histopathological alterations followed the same trend, with more pronounced responses in C in the cold-dry season. The biological responses of the fish revealed adverse effects in the local species population and indicated the presence of metals, PAHs and PPCPs as stressors. The multivariate analysis and the integrated biomarker response index (IBR) corroborated with these results, also indicating that site C had the worst environmental quality. The present study provides new information about the contamination of the sediments of Estuarine-Lagoon Complex of Iguape-Cananéia and the chronic exposure to contaminants in A. brasiliensis. Therefore, contributing to a better understanding of the local environmental quality with data that can support protective management of the area.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Peixes/metabolismo , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Brasil , Cidades , Poluentes Ambientais/análise , Humanos , Estações do Ano , Espécies Sentinelas
18.
Ecotoxicol Environ Saf ; 149: 173-181, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29175343

RESUMO

Aquatic organisms are usually exposed to a mixture of xenobiotics that may exert a large effect even in low concentrations, and when information is obtained exclusively from chemical analyses the prediction of the deleterious effects is potentially hindered. Therefore, the application of complementary monitoring methods is a priority. Here, in addition to chemical analyses, an active biomonitoring study using multiple biomarker responses in Nile tilapia Oreochromis niloticus was conducted to assess the effects of a contamination gradient along four reservoirs in Iguaçu River. Chemical analysis in the muscle showed high levels of metals in fish from the reservoir closest to an industrialized and environmentally degraded area, however fish exposed to all studied reservoirs showed hepatic alterations (necrosis and inflammatory processes). Also, significant variations of biochemical biomarkers were observed with no clear indication of contamination gradient, since an indicative of higher impact was found in an intermediary reservoir, including high concentrations of biliary polycyclic aromatic hydrocarbons (PAHs). However, nuclear morphological alterations (NMA) were less frequent at the same reservoir. Thus, the multi-biomarker approach allied to active biomonitoring is a practical and important tool to assess deleterious effects of contamination in freshwater, providing data for monitoring and conservation protocols.


Assuntos
Ciclídeos/metabolismo , Monitoramento Ambiental/métodos , Água Doce/química , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Animais , Biomarcadores/metabolismo , Brasil , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA