Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Psychol ; 14: 1102425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844343

RESUMO

Laboratory-based studies designed to mimic combat or military field training have consistently demonstrated deleterious effects on warfighter's physical, cognitive, and emotional performance during simulated military operational stress (SMOS). Purpose: The present investigation sought to determine the impact of a 48-h simulated military operational stress (SMOS) on military tactical adaptive decision making, and the influence of select psychological, physical performance, cognitive, and physiological outcome measures on decision making performance. Methods: Male (n = 48, 26.2 ± 5.5 years, 177.7 ± 6.6 cm, 84.7 ± 14.1 kg.) subjects currently serving in the U.S. military were eligible to participate in this study. Eligible subjects completed a 96-h protocol that occurred over five consecutive days and four nights. Day 2 (D2) and day 3 (D3) consisted of 48-h of SMOS wherein sleep opportunity and caloric needs were reduced to 50%. Differences in SPEAR total block score from baseline to peak stress (D3 minus D1) were calculated to assess change in military tactical adaptive decision making and groups were stratified based on increase (high adaptors) or decrease (low adaptors) of the SPEAR change score. Results: Overall, military tactical decision-making declined 1.7% from D1 to D3 (p < 0.001). High adaptors reported significantly higher scores of aerobic capacity (p < 0.001), self-report resilience (p = 0.020), extroversion (p < 0.001), and conscientiousness (p < 0.001). at baseline compared to low adaptors, while low adaptors reported greater scores in Neuroticism (p < 0.001). Conclusion: The present findings suggest that service members whose adaptive decision making abilities improved throughout SMOS (i.e., high adaptors) demonstrated better baseline psychological/self-reported resilience and aerobic capacity. Further, changes in adaptive decision-making were distinct from those of lower order cognitive functions throughout SMOS exposure. With the transition of future military conflicts placing higher priority on enhancing and sustaining cognitive readiness and resiliency, data presented here demonstrates the importance of measuring and categorizing baseline measures inherent to military personnel, in order to change and train one's ability to suffer less of a decline during high stress conditions.

2.
Sleep Health ; 9(1): 93-99, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503874

RESUMO

BACKGROUND: Military personnel must maintain physical performance despite exposure to operational stressors such as sleep loss, caloric restriction and high cognitive load. Habitual sleep and specific sleep features are positively associated with fitness and may contribute to physical performance in operational settings. Further, by affecting muscle recovery, sleep may contribute to the ability to maintain performance across multiple days of exposure to operational stressors. OBJECTIVES: We examined the role of individual differences in baseline sleep on baseline physical performance and on change in physical performance throughout exposure to simulated military operational stress (SMOS). METHODS: Military personnel (36 male, 9 female, 26.3 ± 5.3 years) completed a 5-day SMOS protocol during which they completed a tactical mobility test daily. Sleep questionnaires were administered at intake and sleep was monitored each night with polysomnography. Lasso regressions were used to identify meaningful predictors of physical performance at baseline and of change in physical performance across SMOS. RESULTS: Better aerobic fitness, lower daytime sleepiness (Epworth Sleepiness Scale), and lower absolute slow wave activity (0.5-4 Hz) predicted better physical performance at baseline (66.1% of variance explained), but did not relate to changes in performance. CONCLUSIONS: Collectively, higher daytime sleepiness and slow wave activity may reflect more chronic exposure to insufficient sleep and higher baseline sleep drive, which in turn led to compromised physical performance. The findings suggest that low self-report sleepiness and low objective slow wave activity may reflect two quantifiable markers of healthy sleep behaviors that have implications for operational performance.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Militares , Masculino , Humanos , Feminino , Sonolência , Sono/fisiologia , Privação do Sono/psicologia
3.
J Strength Cond Res ; 37(1): 239-252, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36026481

RESUMO

ABSTRACT: Sinnott, AM, Krajewski, KT, LaGoy, AD, Beckner, ME, Proessl, F, Canino, MC, Nindl, BC, Turner, RL, Lovalekar, MT, Connaboy, C, and Flanagan, SD. Prevention of lower extremity musculoskeletal injuries in tactical and first responder populations: A systematic review and meta-analysis of randomized trials from 1955 to 2020. J Strength Cond Res 37(1): 239-252, 2023-Lower extremity musculoskeletal injuries (LEMSIs) impose a significant burden on tactical and first responder populations. To determine the effectiveness of LEMSI prevention strategies, we performed a systematic review and meta-analysis of randomized controlled trials published in English from 1955 to 2020 (PROSPERO: CRD42018081799). MEDLINE, EMBASE, Cochrane, CINAHL, ProQuest, and DTIC databases were searched for trials that assigned military service members, police, firefighters, or paramedics to LEMSI prevention interventions with a minimum surveillance period of 12 weeks. Evidence was synthesized as odds ratios (OR) for LEMSI occurrence between individuals assigned to interventions and those assigned to standard activities. Risk of bias was assessed with the Cochrane Risk of Bias tool 2.0. Random-effects meta-analyses were conducted for (a) physical training and (b) footwear modifications to reduce LEMSI and (c) footwear modifications to reduce stress fractures specifically. Certainty in the body of evidence was determined with the GRADE approach. Of 28,499 records, 18 trials comprised of more than 11,000 subjects were synthesized. Interventions included physical training (8, N = 6,838), footwear modifications (8, N = 3,792), nutritional supplementation (1, N = 324), and training modifications (1, N = 350). Overall risk of bias was generally moderate ( N = 7 of 18) or high ( N = 9 of 18). Physical training (OR = 0.87, 95% CI [0.71, 1.08], p = 0.22, I 2 = 58.4%) and footwear modification (OR = 1.13, 95% CI [0.85, 1.49], p = 0.42, I 2 = 0.0%) did not reduce LEMSI or stress fractures (OR = 0.76, 95% CI [0.45, 1.28], p = 0.30, I 2 = 70.7%). Our results indicate that there is weak evidence to support current LEMSI prevention strategies. Future efforts will benefit from longer surveillance periods, assessment of women and nonmilitary populations, improved methodological rigor, and a greater breadth of approaches.


Assuntos
Socorristas , Fraturas de Estresse , Traumatismos da Perna , Humanos , Feminino , Fraturas de Estresse/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Traumatismos da Perna/prevenção & controle , Extremidade Inferior/lesões
4.
Chronobiol Int ; 39(11): 1485-1497, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131615

RESUMO

Perception-action coupling, the ability to 'read and react' to the environment, is essential for military personnel to operate within complex and unpredictable environments. Exposure to military operational stressors (e.g., caloric restriction, sleep loss, physical exertion), including around-the-clock operations, may compromise perception-action coupling, thereby impacting performance and safety. We examined the combined effects of simulated military operational stress (SMOS) and time-of-day on perception-action coupling. Fifty-seven active duty and reservist military personnel (45 M; 26.4 ± 5.6 years) completed a 5-day SMOS protocol that included two consecutive days of caloric restriction, and sleep restriction, and disruption. Participants completed a tablet-based perception-action coupling task (PACT) that involves perceiving whether virtual balls fit through virtual apertures. Familiarization occurred on day 0. Eight trials across day 1 (18:00, 22:00), 2 (04:00, 18:00, 22:00) and 3 (04:00, 18:00, 22:00) were analyzed. Mixed models were run to examine the interactive and main effects of day, and time-of-day on PACT response speed and accuracy outcomes. PACT response speed and accuracy outcomes improved at 18:00 and 22:00, whereas performance at 04:00 deteriorated across days. Perception-action coupling performance was resilient to SMOS, except in the early morning when the circadian drive for sleep is high, and the effects of sleep loss are more prominent.


Assuntos
Militares , Humanos , Análise e Desempenho de Tarefas , Ritmo Circadiano/fisiologia , Sono/fisiologia , Percepção , Privação do Sono
5.
Auton Neurosci ; 239: 102953, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35168077

RESUMO

Ultra-short-term (UST; <5 min) heart rate variability (HRV) is increasingly used to indirectly assess autonomic nervous system modulation and physical health. However, UST HRV estimates may vary with measurement technique, physiological state, and data preprocessing. The purpose of this investigation was to assess the information content of UST HRV and its sensitivity to different physiological states and preprocessing techniques. 26 time, frequency, and non-linear HRV measures were determined in 80 healthy men (age: 22.1 ± 3.7 yr) and 25 women (age: 19.4 ± 2.8 yr) from 2-min ECG recordings during seated and standing rest, low-intensity exercise, and seated recovery after maximal exercise. For men, HRV measures obtained during each condition were further analyzed with principal component analysis, k-means clustering, and one-way ANCOVAs. Backward stepwise regression was used to determine the ability of UST HRV to predict aerobic fitness. The sensitivity of UST HRV estimates to different artifact correction procedures was determined with intraclass correlation coefficients. Compared with men, women displayed HRV characteristics suggestive of greater vagal modulation. Nearly 80% of HRV information content was distilled into three principal components comprised of similar measures across conditions. K-means clusters varied in composition and HRV characteristics but not aerobic fitness, which was best predicted by HRV during standing rest. HRV estimates differed depending on artifact correction procedures but were generally similar after individualized correction. Our results indicate that UST HRV measures display redundancy but convey state-specific information and do not strongly predict aerobic fitness in healthy men. Most UST HRV measures are robust to slight differences in artifact correction procedures.


Assuntos
Sistema Nervoso Autônomo , Descanso , Adolescente , Adulto , Sistema Nervoso Autônomo/fisiologia , Exercício Físico/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Gravidez , Descanso/fisiologia , Nervo Vago , Adulto Jovem
6.
J Strength Cond Res ; 36(9): 2493-2501, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569125

RESUMO

ABSTRACT: Beckner, ME, Pihoker, AA, Darnell, ME, Beals, K, Lovalekar, M, Proessl, F, Flanagan, SD, Arciero, PJ, Nindl, BC, and Martin, BJ. Effects of multi-ingredient preworkout supplements on physical performance, cognitive performance, mood state, and hormone concentrations in recreationally active men and women. J Strength Cond Res 36(9): 2493-2501, 2022-Performance enhancement supplement research has primarily focused on the effectiveness of individual ingredients, rather than the combination. This study investigated the acute effects of 2 multi-ingredient preworkout supplements (MIPS), with beta-alanine and caffeine (BAC) and without (NBAC), compared with placebo (PLA) on anaerobic performance, endurance capacity, mood state, cognitive function, vascular function, and anabolic hormones. Thirty exercise-trained individuals (24.4 ± 4.9 years, 15 men and 15 women) completed a fatiguing exercise protocol on 3 separate occasions, 30 minutes after ingestion of BAC, NBAC, or PLA. Outcomes were analyzed using one-way or two-way repeated-measures analysis of variance, as appropriate (alpha = 0.05). Anaerobic power was greater when supplementing with NBAC (10.7 ± 1.2 W·kg -1 ) and BAC (10.8 ± 1.4 W·kg -1 ) compared with PLA (10.4 ± 1.2 W·kg -1 ) ( p = 0.014 and p = 0.022, respectively). BAC improved V̇ o2 peak time to exhaustion ( p = 0.006), accompanied by an increase in blood lactate accumulation ( p < 0.001), compared with PLA. Both NBAC and BAC demonstrated improved brachial artery diameter after workout ( p = 0.041 and p = 0.005, respectively), but PLA did not. L-arginine concentrations increased from baseline to postsupplement consumption of BAC ( p = 0.017). Reaction time significantly decreased after exercise for all supplements. There was no effect of supplement on mood states. Exercise-trained individuals looking to achieve modest improvements in power and endurance may benefit from consuming MIPS before exercise.


Assuntos
Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Esportiva , Cafeína/farmacologia , Cognição , Estudos Cross-Over , Método Duplo-Cego , Feminino , Hormônios , Humanos , Masculino , Resistência Física , Desempenho Físico Funcional , Poliésteres/farmacologia , beta-Alanina/farmacologia
7.
Physiol Behav ; 236: 113413, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811909

RESUMO

PURPOSE: To study the impact of 48 h of simulated military operational stress (SMOS) on executive function, in addition to the role of trait resilience (RES) and aerobic fitness (FIT) on executive function performance. Associations between executive function and neuropeptide-Y (NPY), brain-derived neurotropic factor (BDNF), insulin-like growth factor-I (IGF-I), oxytocin, and α-klotho (klotho) were assessed to elucidate potential biomarkers that may contribute to cognitive performance during a multi-factorial stress scenario. METHODS: Fifty-four service members (SM) (26.4 ± 5.4 years, 178.0 ± 6.5 cm, 85.2 ± 14.0 kg) completed the 5-day protocol, including daily physical exertion and 48 h of restricted sleep and caloric intake. Each morning subjects completed a fasted blood draw followed by Cognition, a 10-part cognitive test battery assessing executive function. SMs were grouped into tertiles [low (L-), moderate (M-), high (H-)] based on Connor Davidson Resilience Score (RES) and V˙O2peak (FIT). Repeated measures ANOVA were run to analyze the effect of day on cognitive performance and biomarker concentration. Separate two-way mixed ANOVAs were run to determine the interaction of group by day on cognitive function. Friedman test with Bonferroni-corrected pairwise comparisons were used if assumptions for ANOVA were not met. Associations between changes in biomarkers and cognitive performance were analyzed using parametric and non-parametric correlation coefficients. RESULTS: SMOS reduced SM vigilance -11.3% (p < 0.001) and working memory -5.6% (p = 0.015), and increased risk propensity +9.5% (p = 0.005). H-RES and H-FIT SMs demonstrated stable vigilance across SMOS (p > 0.05). Vigilance was compromised during SMOS in L- and M-RES (p = 0.007 and p = 0.001, respectively) as well as L- and M-FIT (p = 0.001 and p = 0.031, respectively). SMOS reduced circulating concentrations of α-klotho -7.2% (p = 0.004), NPY -6.4% (p = 0.001), and IGF-I -8.1% (p < 0.001) from baseline through the end of the protocol. BDNF declined -19.2% after the onset of sleep and caloric restriction (p = 0.005) with subsequent recovery within 48 h. Oxytocin remained stable (p > 0.05). Several modest associations between neuroendocrine biomarkers and cognitive performance were identified. CONCLUSION: This study demonstrates H-FIT and H-RES may buffer the impact of SMOS on vigilance. SMOS negatively impacted circulating neuroendocrine biomarkers. While BDNF returned to baseline concentrations by the end of the 5 d protocol, NPY, IGF-I, and α-klotho may require a longer recovery period. These data suggest that the military may benefit by training and/or selection processes targeting at augmenting trait resilience and aerobic fitness for increased readiness.


Assuntos
Função Executiva , Militares , Biomarcadores , Cognição , Exercício Físico , Humanos , Memória de Curto Prazo , Aptidão Física
8.
J Neurosci Methods ; 356: 109143, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33757762

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory disease resulting in axonal demyelination and an amalgamation of symptoms which commonly result in decreased quality of life due to mobility dysfunction and limited participation in meaningful activities. NEW METHOD: The use of non-invasive brain stimulation (NIBS) techniques, specifically transcranial magnetic and transcranial direct current stimulation, have been essential in understanding the pathophysiological decrements related to disease progression, particularly with regard to motor impairments. Although the research in this area has primarily focused on the upper extremities, new interest has arisen in understanding the neurophysiological underpinnings of lower limb impairment. Therefore, the purpose of this review is to: first, provide an overview of common NIBS techniques used to explore sensorimotor neurophysiology; second, summarize lower limb neuromuscular and mobility impairments typically observed in PwMS; third, review the current knowledge regarding interactions between TMS-assessed neurophysiology and lower limb impairments in PwMS; and fourth, provide recommendations for future NIBS studies based on current gaps in the literature. RESULTS: PwMS exhibit reduced excitability and increased inhibitory neurophysiologic function which has been related to disease severity and lower limb motor impairments. Comparison with existing methods: Moreover, promising results indicate that the use of repetitive stimulation and transcranial direct current stimulation may prime neural adaptability and prove useful as a therapeutic tool in ameliorating lower limb impairments. CONCLUSIONS: While these studies are both informative and promising, additional studies are necessary to be conclusive. As such, studies assessing objective measures of lower limb impairments associated with neurophysiological adaptations need further evaluation.


Assuntos
Transtornos Motores , Esclerose Múltipla , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Humanos , Extremidade Inferior , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Neurofisiologia , Qualidade de Vida , Estimulação Magnética Transcraniana
10.
J Neurophysiol ; 125(4): 1006-1021, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596734

RESUMO

Traumatic musculoskeletal injury (MSI) may involve changes in corticomotor structure and function, but direct evidence is needed. To determine the corticomotor basis of MSI, we examined interactions among skeletomotor function, corticospinal excitability, corticomotor structure (cortical thickness and white matter microstructure), and intermittent theta burst stimulation (iTBS)-induced plasticity. Nine women with unilateral anterior cruciate ligament rupture (ACL) 3.2 ± 1.1 yr prior to the study and 11 matched controls (CON) completed an MRI session followed by an offline plasticity-probing protocol using a randomized, sham-controlled, double-blind, cross-over study design. iTBS was applied to the injured (ACL) or nondominant (CON) motor cortex leg representation (M1LEG) with plasticity assessed based on changes in skeletomotor function and corticospinal excitability compared with sham iTBS. The results showed persistent loss of function in the injured quadriceps, compensatory adaptations in the uninjured quadriceps and both hamstrings, and injury-specific increases in corticospinal excitability. Injury was associated with lateralized reductions in paracentral lobule thickness, greater centrality of nonleg corticomotor regions, and increased primary somatosensory cortex leg area inefficiency and eccentricity. Individual responses to iTBS were consistent with the principles of homeostatic metaplasticity; corresponded to injury-related differences in skeletomotor function, corticospinal excitability, and corticomotor structure; and suggested that corticomotor adaptations involve both hemispheres. Moreover, iTBS normalized skeletomotor function and corticospinal excitability in ACL. The results of this investigation directly confirm corticomotor involvement in chronic loss of function after traumatic MSI, emphasize the sensitivity of the corticomotor system to skeletomotor events and behaviors, and raise the possibility that brain-targeted therapies could improve recovery.NEW & NOTEWORTHY Traumatic musculoskeletal injuries may involve adaptive changes in the brain that contribute to loss of function. Our combination of neuroimaging and theta burst transcranial magnetic stimulation (iTBS) revealed distinct patterns of iTBS-induced plasticity that normalized differences in muscle and brain function evident years after unilateral knee ligament rupture. Individual responses to iTBS corresponded to injury-specific differences in brain structure and physiological activity, depended on skeletomotor deficit severity, and suggested that corticomotor adaptations involve both hemispheres.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiopatologia , Doenças Musculoesqueléticas/fisiopatologia , Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiopatologia , Músculo Quadríceps/lesões , Músculo Quadríceps/fisiopatologia , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética , Ruptura/fisiopatologia , Estimulação Magnética Transcraniana , Adulto Jovem
11.
J Neurotrauma ; 37(19): 2102-2112, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32340548

RESUMO

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) are common in military populations and share numerous symptoms. Functional graph theory studies demonstrate altered small-world brain networks in mTBI and PTSD, but little is known about structural covariance networks or the potentially distinct topology of mTBI-PTSD comorbidity. The purpose of this study was to compare brain structural covariance networks in healthy active duty military service members (CON) to those with PTSD, mTBI, and mTBI-PTSD. Seventy-six service members (31 CON, 14 PTSD, 12 mTBI, 19 mTBI-PTSD) completed clinical questionnaires and structural magnetic resonance imaging scans. Cortical thickness-derived adjacency matrices were used to determine structural covariance network topologies. Pairwise comparisons for characteristic path length, clustering coefficient, modularity (global), closeness centrality (nodal), and local efficiency were made across a range of network densities (5-35%) using non-parametric permutation tests. All clinical groups showed greater levels of arousal, stress, anxiety, and depression compared with CON. Global network analysis revealed greater clustering and local efficiency in PTSD compared with CON, whereas nodal analysis indicated altered path lengths and closeness centrality in fronto-limbic areas with mTBI-PTSD. Global and nodal graph outcomes suggest distinct pathophysiological manifestations of mTBI, PTSD, and mTBI-PTSD in structural brain networks. Greater network segregation and nodal differences in fronto-limbic areas may be tied to emotional fluctuations.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/psicologia , Militares , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/etiologia , Adulto , Concussão Encefálica/fisiopatologia , Estudos de Casos e Controles , Conectoma , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Inquéritos e Questionários , Estados Unidos
13.
Front Neurosci ; 14: 315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322188

RESUMO

Isolated ginsenoside metabolites such as Compound K (CK) are of increasing interest to consumer and clinical populations as safe and non-pharmacological means to enhance psychomotor performance constitutively and in response to physical or cognitive stress. Nevertheless, the influence of CK on behavioral performance and EEG measures of cortical activity in humans is undetermined. In this double-blinded, placebo-controlled, counterbalanced within-group study, dose-dependent responses to CK (placebo, 160 and 960 mg) were assessed after 2 weeks of supplementation in nineteen healthy men and women (age: 39.9 ± 7.9 year, height 170.2 ± 8.6 cm, weight 79.7 ± 11.9 kg). Performance on upper- and lower-body choice reaction tests (CRTs) was tested before and after intense lower-body anaerobic exercise. Treatment- and stress-related changes in brain activity were measured with high-density EEG based on event-related potentials, oscillations, and source activity. Upper- (-12.3 ± 3.5 ms, p = 0.002) and lower-body (-12.3 ± 4.9 ms, p = 0.021) response times improved after exercise, with no difference between treatments (upper: p = 0.354; lower: p = 0.926). Analysis of cortical activity in sensor and source space revealed global increases in cortical arousal after exercise. CK increased activity in cortical regions responsible for sustained attention and mitigated exercise-induced increases in arousal. Responses to exercise varied depending on task, but CK appeared to reduce sensory interference from lower-body exercise during an upper-body CRT and improve the general maintenance of task-relevant sensory processes.

15.
Front Physiol ; 9: 531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867571

RESUMO

People with MS (PwMS) often have a more- and less-affected side of the body which results in a variety of asymmetries, including measures of power, strength, muscle activity, and limb loading. Though many studies have identified asymmetries, their impact on gait and balance in PwMS is currently unclear. In this mini-review we first summarize previous findings of asymmetries in muscle function and limb loading and their impact on gait and balance in PwMS. We then provide potential explanations for this lack of consistency in the current literature, and propose study guidelines to improve future lower limb asymmetry studies. Making use of a unified approach to study lower limb asymmetry may then provide more clarity regarding their impact on mobility, specifically gait and balance, in PwMS.

16.
J Neurophysiol ; 120(1): 4-6, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29641302

RESUMO

Cabibel et al. (J Neurophysiol 119: 1266-1272, 2018) report non-polarity-specific effects of high-definition direct current stimulation (HD-tDCS) on crossed facilitation (CF), demonstrated by complex excitatory and inhibitory interhemispheric interactions coupled with HD-tDCS. Choosing a variety of stimulation and muscle contraction parameters and having all participants undergo anodal, cathodal, and sham stimulation may increase the current understanding of HD-tDCS on CF. Furthermore, complementary metrics like the ipsilateral silent period may provide more clarity regarding the polarity-specific enhancement of HD-tDCS on CF.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Eletrodos , Contração Muscular
17.
Int J Rehabil Res ; 41(3): 267-269, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29517640

RESUMO

This cross-sectional study aims to determine whether leg strength asymmetries are associated with walking ability, objective measures of fatigability, or subjective perceptions of fatigue. Maximal knee extensor strength was assessed in 19 patients with multiple sclerosis (PwMS), and a symmetry index was calculated. Walking ability was determined through the total distance covered during a 6-min walk test (6MWT) and fatigability by calculating the change in distance covered between minutes 6 and 1. Perceptions of fatigue were assessed using the Fatigue Severity Scale and by obtaining ratings of perceived exertion during the first and final minute of the 6MWT. PwMS covered less distance (P=0.01) and perceived greater exertion (P<0.01) during minute 6 compared with minute 1. Knee extensor strength was asymmetric (P<0.01). The magnitude of asymmetry did not correlate with walking ability, fatigability, or measures of fatigue. Knee extensor strength asymmetry may not play an important role in prolonged walking performance in PwMS.


Assuntos
Fadiga/fisiopatologia , Desigualdade de Membros Inferiores/fisiopatologia , Esclerose Múltipla/fisiopatologia , Caminhada/fisiologia , Estudos Transversais , Feminino , Humanos , Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Esforço Físico/fisiologia
18.
Complement Ther Med ; 33: 99-104, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28735833

RESUMO

OBJECTIVES: Cannabis has been used for medicinal purpose for thousands of years; however the positive and negative effects of cannabis use in Parkinson's disease (PD) and Multiple Sclerosis (MS) are mostly unknown. Our aim was to assess cannabis use in PD and MS and compare results of self-reported assessments of neurological disability between current cannabis users and non-users. METHODS: An anonymous web-based survey was hosted on the Michael J. Fox Foundation and the National Multiple Sclerosis Society webpages from 15 February to 15 October 2016. The survey collected demographic and cannabis use information, and used standardized questionnaires to assess neurological function, fatigue, balance, and physical activity participation. Analysis of variance and chi-square tests were used for the analysis. RESULTS: The survey was viewed 801 times, and 595 participants were in the final data set. Seventy-six percent and 24% of the respondents reported PD and MS respectively. Current users reported high efficacy of cannabis, 6.4 (SD 1.8) on a scale from 0 to 7 and 59% reported reducing prescription medication since beginning cannabis use. Current cannabis users were younger and less likely to be classified as obese (P < 0.035). Cannabis users reported lower levels of disability, specifically in domains of mood, memory, and fatigue (P<0.040). CONCLUSIONS: Cannabis may have positive impacts on mood, memory, fatigue, and obesity status in people with PD and MS. Further studies using clinically and longitudinally assessed measurements of these domains are needed to establish if these associations are causal and determine the long-term benefits and consequences of cannabis use in people with PD and MS.


Assuntos
Cannabis , Maconha Medicinal/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Adulto , Afeto/efeitos dos fármacos , Idoso , Pessoas com Deficiência , Fadiga/etiologia , Fadiga/prevenção & controle , Feminino , Humanos , Internet , Masculino , Fumar Maconha , Maconha Medicinal/farmacologia , Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Pessoa de Meia-Idade , Transtornos do Humor/etiologia , Transtornos do Humor/prevenção & controle , Esclerose Múltipla/complicações , Obesidade/etiologia , Obesidade/prevenção & controle , Doença de Parkinson/complicações , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA