Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Child Neurol ; 39(5-6): 178-189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751192

RESUMO

Background: Abnormalities in white matter development may influence development of autism spectrum disorder in tuberous sclerosis complex (TSC). Our goals for this study were as follows: (1) use data from a longitudinal neuroimaging study of tuberous sclerosis complex (TACERN) to develop optimized linear mixed effects models for analyzing longitudinal, repeated diffusion tensor imaging metrics (fractional anisotropy, mean diffusivity) pertaining to select white matter tracts, in relation to positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months, and (2) perform an exploratory analysis using optimized models applied to all white matter tracts from these data. Methods: Eligible participants (3-12 months) underwent brain magnetic resonance imaging (MRI) at repeated time points from ages 3 to 36 months. Positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months was used. Linear mixed effects models were fine-tuned separately for fractional anisotropy values (using fractional anisotropy corpus callosum as test outcome) and mean diffusivity values (using mean diffusivity right posterior limb internal capsule as test outcome). Fixed effects included participant age, within-participant longitudinal age, and autism spectrum disorder diagnosis. Results: Analysis included data from n = 78. After selecting separate optimal models for fractional anisotropy and mean diffusivity values, we applied these models to fractional anisotropy and mean diffusivity of all 27 white matter tracts. Fractional anisotropy corpus callosum was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = 0.0093, P = .0612), and mean diffusivity right inferior cerebellar peduncle was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = -0.00002071, P = .0445), though these findings were not statistically significant after multiple comparisons correction. Conclusion: These optimized linear mixed effects models possibly implicate corpus callosum and cerebellar pathology in development of autism spectrum disorder in tuberous sclerosis complex, but future studies are needed to replicate these findings and explore contributors of heterogeneity in these models.


Assuntos
Transtorno do Espectro Autista , Imagem de Tensor de Difusão , Esclerose Tuberosa , Substância Branca , Humanos , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imagem de Tensor de Difusão/métodos , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Longitudinais , Pré-Escolar , Lactente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/crescimento & desenvolvimento , Anisotropia
2.
Children (Basel) ; 9(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35883953

RESUMO

Point-of-care human milk analysis is now feasible in the neonatal intensive care unit (NICU) and allows accurate measurement of macronutrient delivery. Higher macronutrient intakes over this period may promote brain growth and development. In a prospective, observational study of 55 infants born at <32 weeks' gestation, we used a mid-infrared spectroscopy-based human milk analyzer to measure the macronutrient content in repeated samples of human milk over the NICU hospitalization. We calculated daily nutrient intakes from unfortified milk and assigned infants to quintiles based on median intakes over the hospitalization. Infants underwent brain magnetic resonance imaging at term equivalent age to quantify total and regional brain volumes and fractional anisotropy of white matter tracts. Infants in the highest quintile of energy intake from milk, as compared with the lower four quintiles, had larger total brain volume (31 cc, 95% confidence interval [CI]: 5, 56), cortical gray matter (15 cc, 95%CI: 1, 30), and white matter volume (23 cc, 95%CI: 12, 33). Higher protein intake was associated with larger total brain (36 cc, 95%CI: 7, 65), cortical gray matter (22 cc, 95%CI: 6, 38) and deep gray matter (1 cc, 95%CI: 0.1, 3) volumes. These findings suggest innovative strategies to close nutrient delivery gaps in the NICU may promote brain growth for preterm infants.

3.
J Neuroimaging ; 32(5): 991-1000, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35729081

RESUMO

BACKGROUND AND PURPOSE: The success of epilepsy surgery in children with tuberous sclerosis complex (TSC) hinges on identification of the epileptogenic zone (EZ). We studied structural MRI markers of epileptogenic lesions in young children with TSC. METHODS: We included 26 children with TSC who underwent epilepsy surgery before the age of 3 years at five sites, with 12 months or more follow-up. Two neuroradiologists, blinded to surgical outcome data, reviewed 10 candidate lesions on preoperative MRI for characteristics of the tuber (large affected area, calcification, cyst-like properties) and of focal cortical dysplasia (FCD) features (cortical malformation, gray-white matter junction blurring, transmantle sign). They selected lesions suspect for the EZ based on structural MRI, and reselected after unblinding to seizure onset location on electroencephalography (EEG). RESULTS: None of the tuber characteristics and FCD features were distinctive for the EZ, indicated by resected lesions in seizure-free children. With structural MRI alone, the EZ was identified out of 10 lesions in 31%, and with addition of EEG data, this increased to 48%. However, rates of identification of resected lesions in non-seizure-free children were similar. Across 251 lesions, interrater agreement was moderate for large size (κ = .60), and fair (κ = .24) for all other features. CONCLUSIONS: In young children with TSC, the utility of structural MRI features is limited in the identification of the epileptogenic tuber, but improves when combined with EEG data.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Esclerose Tuberosa , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Resultado do Tratamento , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/cirurgia
4.
Arch Dis Child Fetal Neonatal Ed ; 107(5): 533-538, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35058276

RESUMO

OBJECTIVE: To determine associations between body composition and concurrent measures of brain development including (1) Tissue-specific brain volumes and (2) White matter microstructure, among very preterm infants at term equivalent age. DESIGN: Prospective observational study. SETTING: Single-centre academic level III neonatal intensive care unit. PATIENTS: We studied 85 infants born <33 weeks' gestation. METHODS: At term equivalent age, infants underwent air displacement plethysmography to determine body composition, and brain MRI from which we quantified tissue-specific brain volumes and fractional anisotropy (FA) of white matter tracts. We estimated associations of fat and lean mass Z-scores with each brain outcome, using linear mixed models adjusted for intrafamilial correlation among twins and potential confounding variables. RESULTS: Median gestational age was 29 weeks (range 23.4-32.9). One unit greater lean mass Z-score was associated with larger total brain volume (10.5 cc, 95% CI 3.8 to 17.2); larger volumes of the cerebellum (1.2 cc, 95% CI 0.5 to 1.9) and white matter (4.5 cc, 95% CI 0.7 to 8.3); and greater FA in the left cingulum (0.3%, 95% CI 0.1% to 0.6%), right uncinate fasciculus (0.2%, 95% CI 0.0% to 0.5%), and right posterior limb of the internal capsule (0.3%, 95% CI 0.03% to 0.6%). Fat Z-scores were not associated with any outcome. CONCLUSIONS: Lean mass-but not fat-at term was associated with larger brain volume and white matter microstructure differences that suggest improved maturation. Lean mass accrual may index brain growth and development.


Assuntos
Doenças do Prematuro , Substância Branca , Composição Corporal , Encéfalo , Imagem de Tensor de Difusão , Feminino , Retardo do Crescimento Fetal , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Substância Branca/diagnóstico por imagem
5.
Ann Neurol ; 89(4): 726-739, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410532

RESUMO

OBJECTIVE: Approximately 50% of patients with tuberous sclerosis complex develop infantile spasms, a sudden onset epilepsy syndrome associated with poor neurological outcomes. An increased burden of tubers confers an elevated risk of infantile spasms, but it remains unknown whether some tuber locations confer higher risk than others. Here, we test whether tuber location and connectivity are associated with infantile spasms. METHODS: We segmented tubers from 123 children with (n = 74) and without (n = 49) infantile spasms from a prospective observational cohort. We used voxelwise lesion symptom mapping to test for an association between spasms and tuber location. We then used lesion network mapping to test for an association between spasms and connectivity with tuber locations. Finally, we tested the discriminability of identified associations with logistic regression and cross-validation as well as statistical mediation. RESULTS: Tuber locations associated with infantile spasms were heterogenous, and no single location was significantly associated with spasms. However, >95% of tuber locations associated with spasms were functionally connected to the globi pallidi and cerebellar vermis. These connections were specific compared to tubers in patients without spasms. Logistic regression found that globus pallidus connectivity was a stronger predictor of spasms (odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.10-3.50, p = 0.02) than tuber burden (OR = 1.65, 95% CI = 0.90-3.04, p = 0.11), with a mean receiver operating characteristic area under the curve of 0.73 (±0.1) during repeated cross-validation. INTERPRETATION: Connectivity between tuber locations and the bilateral globi pallidi is associated with infantile spasms. Our findings lend insight into spasm pathophysiology and may identify patients at risk. ANN NEUROL 2021;89:726-739.


Assuntos
Hamartoma/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Espasmos Infantis/diagnóstico por imagem , Esclerose Tuberosa/diagnóstico por imagem , Idade de Início , Mapeamento Encefálico , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/patologia , Pré-Escolar , Conectoma , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/patologia , Hamartoma/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/patologia , Estudos Prospectivos , Curva ROC , Espasmos Infantis/patologia , Esclerose Tuberosa/patologia
6.
Mol Psychiatry ; 26(6): 2089-2100, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372008

RESUMO

Psychiatry is undergoing a paradigm shift from the acceptance of distinct diagnoses to a representation of psychiatric illness that crosses diagnostic boundaries. How this transition is supported by a shared neurobiology remains largely unknown. In this study, we first identify single nucleotide polymorphisms (SNPs) associated with psychiatric disorders based on 136 genome-wide association studies. We then conduct a joint analysis of these SNPs and brain structural connectomes in 678 healthy children in the PING study. We discovered a strong, robust, and transdiagnostic mode of genome-connectome covariation which is positively and specifically correlated with genetic risk for psychiatric illness at the level of individual SNPs. Similarly, this mode is also significantly positively correlated with polygenic risk scores for schizophrenia, alcohol use disorder, major depressive disorder, a combined bipolar disorder-schizophrenia phenotype, and a broader cross-disorder phenotype, and significantly negatively correlated with a polygenic risk score for educational attainment. The resulting "vulnerability network" is shown to mediate the influence of genetic risks onto behaviors related to psychiatric vulnerability (e.g., marijuana, alcohol, and caffeine misuse, perceived stress, and impulsive behavior). Its anatomy overlaps with the default-mode network, with a network of cognitive control, and with the occipital cortex. These findings suggest that the brain vulnerability network represents an endophenotype funneling genetic risks for various psychiatric illnesses through a common neurobiological root. It may form part of the neural underpinning of the well-recognized but poorly explained overlap and comorbidity between psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Transtorno Bipolar/genética , Encéfalo , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/genética , Herança Multifatorial/genética
7.
Pediatr Neurol ; 106: 24-31, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32107139

RESUMO

BACKGROUND: This cohort study utilized diffusion tensor imaging tractography to compare the uncinate fasciculus and inferior longitudinal fasciculus in children with Phelan-McDermid syndrome with age-matched controls and investigated trends between autism spectrum diagnosis and the integrity of the uncinate fasciculus and inferior longitudinal fasciculus white matter tracts. METHODS: This research was conducted under a longitudinal study that aims to map the genotype, phenotype, and natural history of Phelan-McDermid syndrome and identify biomarkers using neuroimaging (ClinicalTrial NCT02461420). Patients were aged three to 21 years and underwent longitudinal neuropsychologic assessment over 24 months. MRI processing and analyses were completed using previously validated image analysis software distributed as the Computational Radiology Kit (http://crl.med.harvard.edu/). Whole-brain connectivity was generated for each subject using a stochastic streamline tractography algorithm, and automatically defined regions of interest were used to map the uncinate fasciculus and inferior longitudinal fasciculus. RESULTS: There were 10 participants (50% male; mean age 11.17 years) with Phelan-McDermid syndrome (n = 8 with autism). Age-matched controls, enrolled in a separate longitudinal study (NIH R01 NS079788), underwent the same neuroimaging protocol. There was a statistically significant decrease in the uncinate fasciculus fractional anisotropy measure and a statistically significant increase in uncinate fasciculus mean diffusivity measure, in the patient group versus controls in both right and left tracts (P ≤ 0.024). CONCLUSION: Because the uncinate fasciculus plays a critical role in social and emotional interaction, this tract may underlie some deficits seen in the Phelan-McDermid syndrome population. These findings need to be replicated in a larger cohort.


Assuntos
Transtornos Cromossômicos/patologia , Imagem de Tensor de Difusão , Fascículo Uncinado/patologia , Substância Branca/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Criança , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico por imagem , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Fascículo Uncinado/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
8.
Cereb Cortex ; 30(4): 2199-2214, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31812987

RESUMO

Tuberous sclerosis complex (TSC) is a rare genetic disorder characterized by benign tumors throughout the body; it is generally diagnosed early in life and has a high prevalence of autism spectrum disorder (ASD), making it uniquely valuable in studying the early development of autism, before neuropsychiatric symptoms become apparent. One well-documented deficit in ASD is an impairment in face processing. In this work, we assessed whether anatomical connectivity patterns of the fusiform gyrus, a central structure in face processing, capture the risk of developing autism early in life. We longitudinally imaged TSC patients at 1, 2, and 3 years of age with diffusion compartment imaging. We evaluated whether the anatomical connectivity fingerprint of the fusiform gyrus was associated with the risk of developing autism measured by the Autism Observation Scale for Infants (AOSI). Our findings suggest that the fusiform gyrus connectivity captures the risk of developing autism as early as 1 year of age and provides evidence that abnormal fusiform gyrus connectivity increases with age. Moreover, the identified connections that best capture the risk of developing autism involved the fusiform gyrus and limbic and paralimbic regions that were consistent with the ASD phenotype, involving an increased number of left-lateralized structures with increasing age.


Assuntos
Transtorno Autístico/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Esclerose Tuberosa/diagnóstico por imagem , Transtorno Autístico/etiologia , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Fatores de Risco , Esclerose Tuberosa/complicações
9.
J Neurodev Disord ; 11(1): 36, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31838998

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is prevalent in tuberous sclerosis complex (TSC), occurring in approximately 50% of patients, and is hypothesized to be caused by disruption of neural circuits early in life. Tubers, or benign hamartomas distributed stochastically throughout the brain, are the most conspicuous of TSC neuropathology, but have not been consistently associated with ASD. Widespread neuropathology of the white matter, including deficits in myelination, neuronal migration, and axon formation, exist and may underlie ASD in TSC. We sought to identify the neural circuits associated with ASD in TSC by identifying white matter microstructural deficits in a prospectively recruited, longitudinally studied cohort of TSC infants. METHODS: TSC infants were recruited within their first year of life and longitudinally imaged at time of recruitment, 12 months of age, and at 24 months of age. Autism was diagnosed at 24 months of age with the ADOS-2. There were 108 subjects (62 TSC-ASD, 55% male; 46 TSC+ASD, 52% male) with at least one MRI and a 24-month ADOS, for a total of 187 MRI scans analyzed (109 TSC-ASD; 78 TSC+ASD). Diffusion tensor imaging properties of multiple white matter fiber bundles were sampled using a region of interest approach. Linear mixed effects modeling was performed to test the hypothesis that infants who develop ASD exhibit poor white matter microstructural integrity over the first 2 years of life compared to those who do not develop ASD. RESULTS: Subjects with TSC and ASD exhibited reduced fractional anisotropy in 9 of 17 white matter regions, sampled from the arcuate fasciculus, cingulum, corpus callosum, anterior limbs of the internal capsule, and the sagittal stratum, over the first 2 years of life compared to TSC subjects without ASD. Mean diffusivity trajectories did not differ between groups. CONCLUSIONS: Underconnectivity across multiple white matter fiber bundles develops over the first 2 years of life in subjects with TSC and ASD. Future studies examining brain-behavior relationships are needed to determine how variation in the brain structure is associated with ASD symptoms.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Esclerose Tuberosa/patologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/patologia , Transtorno do Espectro Autista/complicações , Pré-Escolar , Imagem de Tensor de Difusão , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Estudos Prospectivos , Esclerose Tuberosa/complicações
10.
Front Integr Neurosci ; 13: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417372

RESUMO

BACKGROUND: Multi-site MRI studies are often necessary for recruiting sufficiently sized samples when studying rare conditions. However, they require pooling data from multiple scanners into a single data set, and therefore it is critical to evaluate the variability of quantitative MRI measures within and across scanners used in multi-site studies. The aim of this study was to evaluate the reproducibility of structural and diffusion weighted (DW) MRI measurements acquired on seven scanners at five medical centers as part of the Tuberous Sclerosis Complex Autism Center of Excellence Research Network (TACERN) multisite study. METHODS: The American College of Radiology (ACR) phantom was imaged monthly to measure reproducibility of signal intensity and uniformity within and across seven 3T scanners from General Electric, Philips, and Siemens vendors. One healthy adult male volunteer was imaged repeatedly on all seven scanners under the TACERN structural and DW protocol (5 b = 0 s/mm2 and 30 b = 1000 s/mm2) over a period of 5 years (age 22-27 years). Reproducibility of inter- and intra-scanner brain segmentation volumes and diffusion tensor imaging metrics fractional anisotropy (FA) and mean diffusivity (MD) within white matter regions was quantified with coefficient of variation. RESULTS: The American College of Radiology Phantom signal intensity and uniformity were similar across scanners and changed little over time, with a mean intra-scanner coefficient of variation of 3.6 and 1.8%, respectively. The mean inter- and intra-scanner coefficients of variation of brain structure volumes derived from T1-weighted (T1w) images of the human phantom were 3.3 and 1.1%, respectively. The mean inter- and intra-scanner coefficients of variation of FA in white matter regions were 4.5 and 2.5%, while the mean inter- and intra-scanner coefficients of variation of MD in white matter regions were 5.4 and 1.5%. CONCLUSION: Our results suggest that volumetric and diffusion tensor imaging (DTI) measurements are highly reproducible between and within scanners and provide typical variation amplitudes that can be used as references to interpret future findings in the TACERN network.

11.
Ann Clin Transl Neurol ; 6(7): 1178-1190, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353853

RESUMO

OBJECTIVE: Diffusion tensor imaging (DTI) of the white matter is a biomarker for neurological disease burden in tuberous sclerosis complex (TSC). To clarify the basis of abnormal diffusion in TSC, we correlated ex vivo high-resolution diffusion imaging with histopathology in four tissue types: cortex, tuber, perituber, and white matter. METHODS: Surgical specimens of three children with TSC were scanned in a 3T or 7T MRI with a structural image isotropic resolution of 137-300 micron, and diffusion image isotropic resolution of 270-1,000 micron. We stained for myelin (luxol fast blue, LFB), gliosis (glial fibrillary acidic protein, GFAP), and neurons (NeuN) and registered the digitized histopathology slides (0.686 micron resolution) to MRI for visual comparison. We then performed colocalization analysis in four tissue types in each specimen. Finally, we applied a linear mixed model (LMM) for pooled analysis across the three specimens. RESULTS: In white matter and perituber regions, LFB optical density measures correlated with fractional anisotropy (FA) and inversely with mean diffusivity (MD). In white matter only, GFAP correlated with MD, and inversely with FA. In tubers and in the cortex, there was little variation in mean LFB and GFAP signal intensity, and no correlation with MRI metrics. Neuronal density correlated with MD. In the analysis of the combined specimens, the most robust correlation was between white matter MD and LFB metrics. INTERPRETATION: In TSC, diffusion imaging abnormalities in microscopic tissue types correspond to specific histopathological markers. Across all specimens, white matter diffusivity correlates with myelination.


Assuntos
Bainha de Mielina/patologia , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Anisotropia , Encéfalo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Gliose/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Neurônios/patologia
12.
Pediatr Neurol ; 90: 37-43, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396833

RESUMO

OBJECTIVE: Phelan-McDermid syndrome is caused by haploinsufficiency of SHANK3 on terminal chromosome 22. Knowledge about altered neuroanatomic circuitry in Phelan-McDermid syndrome comes from mouse models showing striatal hypertrophy in the basal ganglia, and from humans with evidence of cerebellar atrophy. To date, no studies have performed volumetric analysis on Phelan-McDermid syndrome patients. METHODS: We performed volumetric analysis of baseline brain MRIs of Phelan-McDermid syndrome patients (ages three to 21 years) enrolled in a prospective natural history study (ClinicalTrials.gov NCT02461420). Using MRI segmentations carried out with PSTAPLE algorithm, we measured relative volumes (volume of the structure divided by the volume of the brain parenchyma) of basal ganglia and cerebellar structures. We compared these measurements to those of age- and sex-matched healthy controls part of another study. Among the patients, we performed linear regression of each relative volume using Repetitive Behavior Scale-Revised total score and Aberrant Behavior Checklist stereotypy score. Eleven patients with Phelan-McDermid syndrome (six females, five males) and 11 healthy controls were in this analysis. RESULTS: At time of MRI, the mean age of the patients and controls was 9.24 (5.29) years and 9.00 (4.49) years, respectively (P = 0.66). Compared to controls, patients had decreased caudate (P ≤ 0.013), putamen (P ≤ 0.026), and left pallidum (P = 0.033) relative volumes. Relative volume of cerebellar vermal lobules I to V (beta coefficient = -17119, P = 0.017) decreased with increasing Repetitive Behavior Scale-Revised total score. CONCLUSIONS: The volumes of the striatum and left pallidum are decreased in individuals with Phelan-McDermid syndrome. Cerebellar vermis volume may predict repetitive behavior severity in Phelan-McDermid syndrome. These findings warrant further investigation in larger samples.


Assuntos
Gânglios da Base/patologia , Cerebelo/patologia , Transtornos Cromossômicos/patologia , Adolescente , Gânglios da Base/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico por imagem , Cromossomos Humanos Par 22 , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tamanho do Órgão , Adulto Jovem
13.
Cereb Cortex ; 28(10): 3665-3672, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939236

RESUMO

INTRODUCTION: Neurological manifestations in Tuberous Sclerosis Complex (TSC) are highly variable. Diffusion tensor imaging (DTI) may reflect the neurological disease burden. We analyzed the association of autism spectrum disorder (ASD), intellectual disability (ID) and epilepsy with callosal DTI metrics in subjects with and without TSC. METHODS: 186 children underwent 3T MRI DTI: 51 with TSC (19 with concurrent ASD), 46 with non-syndromic ASD and 89 healthy controls (HC). Subgroups were based on presence of TSC, ASD, ID, and epilepsy. Density-weighted DTI metrics obtained from tractography of the corpus callosum were fitted using a 2-parameter growth model. We estimated distributions using bootstrapping and calculated half-life and asymptote of the fitted curves. RESULTS: TSC was associated with a lower callosal fractional anisotropy (FA) than ASD, and ASD with a lower FA than HC. ID, epilepsy and ASD diagnosis were each associated with lower FA values, demonstrating additive effects. In TSC, the largest change in FA was related to a comorbid diagnosis of ASD. Mean diffusivity (MD) showed an inverse relationship to FA. Some subgroups were too small for reliable data fitting. CONCLUSIONS: Using a cross-disorder approach, this study demonstrates cumulative abnormality of callosal white matter diffusion with increasing neurological comorbidity.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Anisotropia , Criança , Pré-Escolar , Imagem de Tensor de Difusão , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Deficiência Intelectual/diagnóstico por imagem , Masculino , Adulto Jovem
14.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29606355

RESUMO

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Assuntos
Feto/virologia , Neurônios/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calcinose/patologia , Calcinose/veterinária , Feminino , Idade Gestacional , Macaca mulatta , Imageamento por Ressonância Magnética , Necrose , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Neurônios/virologia , Gravidez , Índice de Gravidade de Doença , Vasculite/patologia , Vasculite/veterinária , Infecção por Zika virus/veterinária , Infecção por Zika virus/virologia
15.
Neurology ; 90(17): e1493-e1500, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29572283

RESUMO

OBJECTIVE: In this cohort analysis, we studied 1-year-old infants with tuberous sclerosis complex (TSC), correlating volumes of cerebellar structures with neurodevelopmental measures. METHODS: We analyzed data from a prospective biomarker study in infants with TSC (ClinicalTrials.gov NCT01780441). We included participants aged 12 months with an identified mutation of TSC1 or TSC2. Using MRI segmentation performed with the PSTAPLE algorithm, we measured relative volumes (structure volume divided by intracranial contents volume) of the following structures: right/left cerebellar white matter, right/left cerebellar exterior, vermal lobules I-V, vermal lobules VI-VII, and vermal lobules VIII-X. We correlated relative volumes to Mullen Scales of Early Learning (MSEL) scores. RESULTS: There were 70 participants (mean age 1.03 [0.11] years): n = 11 had a TSC1 mutation; n = 59 had a TSC2 mutation. For patients with TSC2 mutation, for every percentage increase in total cerebellar volume, there was an approximate 10-point increase in MSEL composite score (ß = 10.47 [95% confidence interval 5.67, 15.27], p < 0.001). For patients with TSC1 mutation, the relationship between cerebellar volume and MSEL composite score was not statistically significant (ß = -10.88 [95% confidence interval -22.16, 0.41], p = 0.06). For patients with TSC2 mutation, there were positive slopes when regressing expressive language and visual reception skills with volumes of nearly all cerebellar structures (p ≤ 0.29); there were also positive slopes when regressing receptive language skills, gross motor skills, and fine motor skills with volumes of cerebellar right/left exterior (p ≤ 0.014). CONCLUSIONS: Cerebellar volume loss-perhaps reflecting Purkinje cell degeneration-may predict neurodevelopmental severity in patients with TSC2 mutations.


Assuntos
Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Esclerose Tuberosa/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Masculino , Mutação/genética , Testes Neuropsicológicos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
16.
Neurology ; 85(18): 1536-45, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26432846

RESUMO

OBJECTIVE: To assess the extent and evolution of tissue abnormality of tubers, perituber tissue, and normal-appearing white matter (NAWM) in patients with tuberous sclerosis complex using serial diffusion tensor imaging. METHODS: We applied automatic segmentation based on a combined global-local intensity mixture model of 3T structural and 35 direction diffusion tensor MRIs (diffusion tensor imaging) to define 3 regions: tuber tissue, an equal volume perituber rim, and the remaining NAWM. For each patient, scan, lobe, and tissue type, we analyzed the averages of mean diffusivity (MD) and fractional anisotropy (FA) in a generalized additive mixed model. RESULTS: Twenty-five patients (mean age 5.9 years; range 0.5-24.5 years) underwent 2 to 6 scans each, totaling 70 scans. Average time between scans was 1.2 years (range 0.4-2.9). Patient scans were compared with those of 73 healthy controls. FA values were lowest, and MD values were highest in tubers, next in perituber tissue, then in NAWM. Longitudinal analysis showed a positive (FA) and negative (MD) correlation with age in tubers, perituber tissue, and NAWM. All 3 tissue types followed a biexponential developmental trajectory, similar to the white matter of controls. An additional qualitative analysis showed a gradual transition of diffusion values across the tissue type boundaries. CONCLUSIONS: Similar to NAWM, tuber and perituber tissues in tuberous sclerosis complex undergo microstructural evolution with age. The extent of diffusion abnormality decreases with distance to the tuber, in line with known extension of histologic, immunohistochemical, and molecular abnormalities beyond tuber pathology.


Assuntos
Encéfalo/patologia , Esclerose Tuberosa/patologia , Substância Branca/patologia , Adolescente , Anisotropia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Progressão da Doença , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Estudos Retrospectivos , Adulto Jovem
17.
Epilepsy Res ; 108(2): 280-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315019

RESUMO

OBJECTIVE: To investigate the correlation between spike propagation represented by spatiotemporal source analysis of magnetoencephalographic (MEG) spikes and surgical outcome in patients with temporal lobe epilepsy. METHODS: Thirty-seven patients were divided into mesial (n=27) and non-mesial (n=10) groups based on the presurgical evaluation. In each patient, ten ipsilateral spikes were averaged, and spatiotemporal source maps of the averaged spike were obtained by using minimum norm estimate. Regions of interest (ROIs) were created including temporoparietal, inferior frontal, mesial temporal, anterior and posterior part of the lateral temporal cortex. We extracted activation values from the source maps and the threshold was set at half of the maximum activation at the peak latency. The leading and propagated areas of the spike were defined as those ROIs with activation reaching the threshold at the earliest and at the peak latencies, respectively. Surgical outcome was assessed based on Engel's classification. Binary variables were created from leading areas (restricted to the anterior and mesial temporal ROIs or not) and from propagation areas (involving the temporoparietal ROI or not), and for surgical outcome (Class I or not). Fisher's exact test was used for significance testing. RESULTS: In total and mesial group, restricted anterior/mesial temporal leading areas were correlated with Class I (p<0.05). Temporoparietal propagation was correlated with Class II-IV (p<0.05). For the non-mesial group, no significant relation was found. CONCLUSIONS: Spike propagation patterns represented by spatiotemporal source analysis of MEG spikes may provide useful information for prognostic implication in presurgical evaluation of epilepsy.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Magnetoencefalografia/métodos , Adolescente , Adulto , Idoso , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
18.
Future Neurol ; 8(5): 583-597, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24489482

RESUMO

In this article, the authors aim to introduce the nonradiologist to diffusion tensor imaging (DTI) and its applications to both clinical and research aspects of tuberous sclerosis complex. Tuberous sclerosis complex is a genetic neurocutaneous syndrome with variable and unpredictable neurological comorbidity that includes refractory epilepsy, intellectual disability, behavioral abnormalities and autism spectrum disorder. DTI is a method for modeling water diffusion in tissue and can noninvasively characterize microstructural properties of the brain. In tuberous sclerosis complex, DTI measures reflect well-known pathological changes. Clinically, DTI can assist with detecting the epileptogenic tuber. For research, DTI has a putative role in identifying potential disease biomarkers, as DTI abnormalities of the white matter are associated with neurocognitive morbidity including autism. If indeed DTI changes parallel phenotypical changes related to the investigational treatment of epilepsy, cognition and behavior with mTOR inhibitors, it will facilitate future clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA