Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Microorganisms ; 12(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39338537

RESUMO

As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting healthcare for years. The largest sequencing initiative for any species was initiated to combat the virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing represents a unique opportunity to understand selective pressures and viral evolution but requires cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we integrate a two-year genotyping window with structural biology to explore the selective pressures of SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the high drift rate of amino acids involved in antibody evasion also corresponds to changes within the ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The genotyping suggests selective pressure for receptor specificity that could also confer changes in viral risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex (nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain critical factors for drug development that will be sustainable, unlike those strategies targeting Spike.

2.
Am J Med Genet A ; 194(11): e63811, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38980148

RESUMO

There are currently multiple disorders of aminoacyl-tRNA synthetases described, including KARS1-related disorder resulting from dysfunctional lysyl-tRNA synthetases. In this report, we describe four novel KARS1 variants in three affected individuals, two of whom displayed arthrogryposis-like phenotypes, suggestive of phenotypic expansion. We also highlight subjective clinical improvement in one subject following lysine supplementation in conjunction with a protein-fortified diet, suggesting its potential as a novel treatment modality for KARS1-related disorders. This report offers additional insight into the etiology and management of KARS1-related disorders and expands our ability to provide guidance to affected individuals and their families.


Assuntos
Artrogripose , Lisina-tRNA Ligase , Lisina , Fenótipo , Humanos , Artrogripose/genética , Artrogripose/patologia , Masculino , Lisina/genética , Feminino , Lisina-tRNA Ligase/genética , Suplementos Nutricionais , Mutação/genética , Lactente , Pré-Escolar , Criança
3.
Artigo em Inglês | MEDLINE | ID: mdl-38830034

RESUMO

OBJECTIVES: Severe functional tricuspid regurgitation (FTR) is associated with subvalvular remodelling, but leaflet tissue alterations may also contribute. We set out to investigate molecular mechanisms driving leaflet remodelling in chronic ovine FTR. METHODS: Thirteen adult sheep (55 ± 4kg) underwent left thoracotomy, epicardial echocardiography, and pulmonary artery banding (PAB) to induce right heart failure and FTR. After 16 weeks, 13 banded (FTR) and 12 control (CTL) animals underwent median sternotomy for epicardial echocardiography and were subsequently sacrificed with each tricuspid leaflet tissue harvested for RNA-seq and histology. RESULTS: After 16 weeks, 7 animals developed severe, 2 moderate, and 4 mild tricuspid regurgitation (TR). Relative to CTL, FTR animals had increased PAP, TR, tricuspid annular diameter, and right atrial volume, while tricuspid annular plane systolic excursion (TAPSE) and RV fractional area change decreased. FTR leaflets exhibited altered constituents and an increase in cellularity. RNA-seq identified 85 significantly differentially expressed genes (DEG) with 17, 53, and 127 within the anterior, posterior, and septal leaflets respectively. RRM2, PRG4, and CXCL8 (IL-8) were identified as DEGs across all leaflets and CXCL8 was differentially expressed between FTR severity grades. RRM2, PRG4, and CXCL8 significantly correlated with TAPSE, and this correlation was consistent regardless of the anatomical location of the leaflet. CONCLUSIONS: PAB in our ovine model resulted in RV failure and FTR. Leaflet RNA-seq identified several DEGs, specifically RRM2, PRG4, and CXCL8, with known roles in tissue remodelling. These data along with an overall increase in leaflet cellularity suggest tricuspid leaflets actively remodel in FTR.

4.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536959

RESUMO

The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.


Assuntos
Células de Purkinje , Fator de Células-Tronco , Camundongos , Animais , Células de Purkinje/fisiologia , Fator de Células-Tronco/metabolismo , Cerebelo/fisiologia , Córtex Cerebelar/metabolismo , Interneurônios/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Mamíferos/metabolismo
5.
BioTech (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247731

RESUMO

Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, ß-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost-benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.

6.
Cells ; 12(20)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887346

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a pathological condition wherein lung injury precipitates the deposition of scar tissue, ultimately leading to a decline in pulmonary function. Existing research indicates a notable exacerbation in the clinical prognosis of IPF patients following infection with COVID-19. This investigation employed bulk RNA-sequencing methodologies to describe the transcriptomic profiles of small airway cell cultures derived from IPF and post-COVID fibrosis patients. Differential gene expression analysis unveiled heightened activation of pathways associated with microtubule assembly and interferon signaling in IPF cell cultures. Conversely, post-COVID fibrosis cell cultures exhibited distinctive characteristics, including the upregulation of pathways linked to extracellular matrix remodeling, immune system response, and TGF-ß1 signaling. Notably, BMP signaling levels were elevated in cell cultures derived from IPF patients compared to non-IPF control and post-COVID fibrosis samples. These findings underscore the molecular distinctions between IPF and post-COVID fibrosis, particularly in the context of signaling pathways associated with each condition. A better understanding of the underlying molecular mechanisms holds the promise of identifying potential therapeutic targets for future interventions in these diseases.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Transcriptoma/genética , COVID-19/genética , Fibrose Pulmonar Idiopática/patologia , Perfilação da Expressão Gênica , Técnicas de Cultura de Células , Fibrose
7.
Biology (Basel) ; 12(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37106788

RESUMO

Dysfunction of the WW domain-containing adaptor with coiled-coil, WAC, gene underlies a rare autosomal dominant disorder, DeSanto-Shinawi syndrome (DESSH). DESSH is associated with facial dysmorphia, hypotonia, and cognitive alterations, including attention deficit hyperactivity disorder and autism. How the WAC protein localizes and functions in neural cells is critical to understanding its role during development. To understand the genotype-phenotype role of WAC, we developed a knowledgebase of WAC expression, evolution, human genomics, and structural/motif analysis combined with human protein domain deletions to assess how conserved domains guide cellular distribution. Then, we assessed localization in a cell type implicated in DESSH, cortical GABAergic neurons. WAC contains conserved charged amino acids, phosphorylation signals, and enriched nuclear motifs, suggesting a role in cellular signaling and gene transcription. Human DESSH variants are found within these regions. We also discovered and tested a nuclear localization domain that impacts the cellular distribution of the protein. These data provide new insights into the potential roles of this critical developmental gene, establishing a platform to assess further translational studies, including the screening of missense genetic variants in WAC. Moreover, these studies are essential for understanding the role of human WAC variants in more diverse neurological phenotypes, including autism spectrum disorder.

8.
Med Sci (Basel) ; 11(2)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37092498

RESUMO

Recent identification of four additional polyaminopathies, including Bachmann-Bupp syndrome, have benefited from previous research on Snyder-Robinson syndrome in order to advance from research to treatment more quickly. As a result of the discovery of these conditions, the potential for treatment within this pathway, and for other possible unidentified polyaminopathies, the International Center for Polyamine Disorders (ICPD) was created to help promote understanding of these conditions, research opportunities, and appropriate care for families. This case study provides insights from two new patients diagnosed with Bachmann-Bupp syndrome, further expanding our understanding of this ultra-rare condition, as well as a general discussion about other known polyaminopathies. This work also presents considerations for collaborative research efforts across these conditions, along with others that are likely to be identified in time, and outlines the role that the ICPD hopes to fill as more patients with these polyaminopathies continue to be identified and diagnosed.


Assuntos
Eflornitina , Poliaminas , Humanos , Poliaminas/metabolismo
9.
J Biol Chem ; 299(6): 104698, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059183

RESUMO

Identifying events that regulate the prenylation and localization of small GTPases will help define new strategies for therapeutic targeting of these proteins in disorders such as cancer, cardiovascular disease, and neurological deficits. Splice variants of the chaperone protein SmgGDS (encoded by RAP1GDS1) are known to regulate prenylation and trafficking of small GTPases. The SmgGDS-607 splice variant regulates prenylation by binding preprenylated small GTPases but the effects of SmgGDS binding to the small GTPase RAC1 versus the splice variant RAC1B are not well defined. Here we report unexpected differences in the prenylation and localization of RAC1 and RAC1B and their binding to SmgGDS. Compared to RAC1, RAC1B more stably associates with SmgGDS-607, is less prenylated, and accumulates more in the nucleus. We show that the small GTPase DIRAS1 inhibits binding of RAC1 and RAC1B to SmgGDS and reduces their prenylation. These results suggest that prenylation of RAC1 and RAC1B is facilitated by binding to SmgGDS-607 but the greater retention of RAC1B by SmgGDS-607 slows RAC1B prenylation. We show that inhibiting RAC1 prenylation by mutating the CAAX motif promotes RAC1 nuclear accumulation, suggesting that differences in prenylation contribute to the different nuclear localization of RAC1 versus RAC1B. Finally, we demonstrate RAC1 and RAC1B that cannot be prenylated bind GTP in cells, indicating that prenylation is not a prerequisite for activation. We report differential expression of RAC1 and RAC1B transcripts in tissues, consistent with these two splice variants having unique functions that might arise in part from their differences in prenylation and localization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilação , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Prenilação de Proteína
10.
Biomolecules ; 13(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36830626

RESUMO

Insulin is amongst the human genome's most well-studied genes/proteins due to its connection to metabolic health. Within this article, we review literature and data to build a knowledge base of Insulin (INS) genetics that influence transcription, transcript processing, translation, hormone maturation, secretion, receptor binding, and metabolism while highlighting the future needs of insulin research. The INS gene region has 2076 unique variants from population genetics. Several variants are found near the transcriptional start site, enhancers, and following the INS transcripts that might influence the readthrough fusion transcript INS-IGF2. This INS-IGF2 transcript splice site was confirmed within hundreds of pancreatic RNAseq samples, lacks drift based on human genome sequencing, and has possible elevated expression due to viral regulation within the liver. Moreover, a rare, poorly characterized African population-enriched variant of INS-IGF2 results in a loss of the stop codon. INS transcript UTR variants rs689 and rs3842753, associated with type 1 diabetes, are found in many pancreatic RNAseq datasets with an elevation of the 3'UTR alternatively spliced INS transcript. Finally, by combining literature, evolutionary profiling, and structural biology, we map rare missense variants that influence preproinsulin translation, proinsulin processing, dimer/hexamer secretory storage, receptor activation, and C-peptide detection for quasi-insulin blood measurements.


Assuntos
Diabetes Mellitus Tipo 1 , Medicina de Precisão , Humanos , Proinsulina , Diabetes Mellitus Tipo 1/genética , Pâncreas , Genômica
11.
Am J Respir Cell Mol Biol ; 68(6): 638-650, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36780662

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a pathological condition of unknown etiology that results from injury to the lung and an ensuing fibrotic response that leads to the thickening of the alveolar walls and obliteration of the alveolar space. The pathogenesis is not clear, and there are currently no effective therapies for IPF. Small airway disease and mucus accumulation are prominent features in IPF lungs, similar to cystic fibrosis lung disease. The ATP12A gene encodes the α-subunit of the nongastric H+, K+-ATPase, which functions to acidify the airway surface fluid and impairs mucociliary transport function in patients with cystic fibrosis. It is hypothesized that the ATP12A protein may play a role in the pathogenesis of IPF. The authors' studies demonstrate that ATP12A protein is overexpressed in distal small airways from the lungs of patients with IPF compared with normal human lungs. In addition, overexpression of the ATP12A protein in mouse lungs worsened bleomycin induced experimental pulmonary fibrosis. This was prevented by a potassium competitive proton pump blocker, vonoprazan. These data support the concept that the ATP12A protein plays an important role in the pathogenesis of lung fibrosis. Inhibition of the ATP12A protein has potential as a novel therapeutic strategy in IPF treatment.


Assuntos
Fibrose Cística , Fibrose Pulmonar Idiopática , Camundongos , Animais , Humanos , Fibrose Cística/metabolismo , Bombas de Próton/metabolismo , Bombas de Próton/farmacologia , Bombas de Próton/uso terapêutico , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Bleomicina/farmacologia , Fibrose , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/farmacologia
12.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672963

RESUMO

The SOX transcription factor family is pivotal in controlling aspects of development. To identify genotype-phenotype relationships of SOX proteins, we performed a non-biased study of SOX using 1890 open-reading frame and 6667 amino acid sequences in combination with structural dynamics to interpret 3999 gnomAD, 485 ClinVar, 1174 Geno2MP, and 4313 COSMIC human variants. We identified, within the HMG (High Mobility Group)- box, twenty-seven amino acids with changes in multiple SOX proteins annotated to clinical pathologies. These sites were screened through Geno2MP medical phenotypes, revealing novel SOX15 R104G associated with musculature abnormality and SOX8 R159G with intellectual disability. Within gnomAD, SOX18 E137K (rs201931544), found within the HMG box of ~0.8% of Latinx individuals, is associated with seizures and neurological complications, potentially through blood-brain barrier alterations. A total of 56 highly conserved variants were found at sites outside the HMG-box, including several within the SOX2 HMG-box-flanking region with neurological associations, several in the SOX9 dimerization region associated with Campomelic Dysplasia, SOX14 K88R (rs199932938) flanking the HMG box associated with cardiovascular complications within European populations, and SOX7 A379V (rs143587868) within an SOXF conserved far C-terminal domain heterozygous in 0.716% of African individuals with associated eye phenotypes. This SOX data compilation builds a robust genotype-to-phenotype association for a gene family through more robust ortholog data integration.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Fatores de Transcrição SOX , Humanos , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Transcrição SOX/genética , Sequência de Aminoácidos , Dimerização , Genótipo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição SOXE/genética
13.
BMC Pediatr ; 23(1): 1, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593444

RESUMO

BACKGROUND: Noonan Syndrome is caused by variants in a variety of genes found in the RAS/MAPK pathway. As more causative genes for Noonan Syndrome have been identified, more phenotype variability has been found, particularly congenital heart defects. Here, we report a case of dilated coronary arteries in a pediatric patient with a RIT1 variant to add to the body of literature around this rare presentation of Noonan Syndrome.  CASE PRESENTATION: A 2-month-old female was admitted due to increasing coronary artery dilation and elevated inflammatory markers. Rapid whole genome sequencing was performed and a likely pathogenic RIT1 variant was detected. This gene has been associated with a rare form of Noonan Syndrome and associated heart defects. Diagnosis of the RIT1 variant also gave reassurance about the patient's cardiac findings and allowed for more timely discharge as she was discharged to home the following day.  CONCLUSIONS: This case highlights the importance of the association between dilated coronary arteries and Noonan syndrome and that careful cardiac screening should be advised in patients diagnosed with Noonan syndrome. In addition, this case emphasizes the importance of involvement of other subspecialities to determine a diagnosis. Through multidisciplinary medicine, the patient was able to return home in a timely manner with a diagnosis and the reassurance that despite her dilated coronary arteries and elevated inflammatory markers there was no immediate concern to her health.


Assuntos
Cardiopatias Congênitas , Síndrome de Noonan , Humanos , Feminino , Síndrome de Noonan/complicações , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Vasos Coronários/patologia , Proteínas ras/metabolismo , Fenótipo , Mutação
14.
Front Cell Dev Biol ; 10: 1033695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467401

RESUMO

The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.

15.
Pediatr Ann ; 51(10): e381-e386, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36215089

RESUMO

Exciting new developments in biomedical and computational sciences provide an extraordinary and unparalleled opportunity to compile, connect, and analyze multiple types of "big data," driving the development of personalized medicine. These insights must begin in early life (ie, pregnancy, neonatal, and infancy) and focus on early prevention, diagnosis, and intervention-areas of medicine where pediatricians are poised to lead the way to a personalized medicine future. The rapid growth of genomics (including pharmacogenomics), transcriptomics, and related "omics" has revolutionized the diagnosis of rare monogenic disorders. It is now clarifying the pathogenesis of complex conditions ranging from autism spectrum disorder to asthma. Collaborations between clinicians and basic scientists integrating multiomics approaches in evaluating children with severe illness are transforming the fields of perinatal, neonatal, and pediatric critical care medicine. Improvements in rapid diagnostic and prognostic information suggest that pediatric personalized medicine is under way and has an exciting future. [Pediatr Ann. 2022;51(10):e381-e386.].


Assuntos
Transtorno do Espectro Autista , Pediatria , Criança , Feminino , Genômica , Humanos , Recém-Nascido , Farmacogenética , Medicina de Precisão , Gravidez
16.
Artigo em Inglês | MEDLINE | ID: mdl-36307211

RESUMO

We provide the first study of two siblings with a novel autosomal recessive LRP1-related syndrome identified by rapid genome sequencing and overlapping multiple genetic models. The patients presented with respiratory distress, congenital heart defects, hypotonia, dysmorphology, and unique findings, including corneal clouding and ascites. Both siblings had compound heterozygous damaging variants, c.11420G > C (p.Cys3807Ser) and c.12407T > G (p.Val4136Gly) in LRP1, in which segregation analysis helped dismiss additional variants of interest. LRP1 analysis using multiple human/mouse data sets reveals a correlation to patient phenotypes of Peters plus syndrome with additional severe cardiomyopathy and blood vessel development complications linked to neural crest cells.


Assuntos
Fenda Labial , Permeabilidade do Canal Arterial , Cardiopatias Congênitas , Deformidades Congênitas dos Membros , Animais , Humanos , Camundongos , Fenda Labial/complicações , Doenças da Córnea/metabolismo , Permeabilidade do Canal Arterial/complicações , Permeabilidade do Canal Arterial/genética , Deformidades Congênitas dos Membros/complicações , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Síndrome , Doenças Ósseas/complicações , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Pneumopatias/complicações , Pneumopatias/genética , Pneumopatias/metabolismo
17.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980381

RESUMO

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Assuntos
Transtornos do Neurodesenvolvimento , Miosina não Muscular Tipo IIB , Actinas , Cílios/genética , Proteínas Hedgehog/genética , Humanos , Cadeias Pesadas de Miosina/genética , Transtornos do Neurodesenvolvimento/genética , Miosina não Muscular Tipo IIB/genética
18.
Compr Physiol ; 12(2): 3303-3336, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35578967

RESUMO

Genomics has grown exponentially over the last decade. Common variants are associated with physiological changes through statistical strategies such as Genome-Wide Association Studies (GWAS) and quantitative trail loci (QTL). Rare variants are associated with diseases through extensive filtering tools, including population genomics and trio-based sequencing (parents and probands). However, the genomic associations require follow-up analyses to narrow causal variants, identify genes that are influenced, and to determine the physiological changes. Large quantities of data exist that can be used to connect variants to gene changes, cell types, protein pathways, clinical phenotypes, and animal models that establish physiological genomics. This data combined with bioinformatics including evolutionary analysis, structural insights, and gene regulation can yield testable hypotheses for mechanisms of genomic variants. Molecular biology, biochemistry, cell culture, CRISPR editing, and animal models can test the hypotheses to give molecular variant mechanisms. Variant characterizations can be a significant component of educating future professionals at the undergraduate, graduate, or medical training programs through teaching the basic concepts and terminology of genetics while learning independent research hypothesis design. This article goes through the computational and experimental analysis strategies of variant characterization and provides examples of these tools applied in publications. © 2022 American Physiological Society. Compr Physiol 12:3303-3336, 2022.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Animais , Biologia Computacional , Predisposição Genética para Doença , Humanos , Fenótipo
19.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315363

RESUMO

Cystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the CF transmembrane conductance regulator (CFTR) gene. Converging evidence suggests that CF carriers with only 1 defective CFTR copy are at increased risk for CF-related conditions and pulmonary infections, but the molecular mechanisms underpinning this effect remain unknown. We performed transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) of CF child-parent trios (proband, father, and mother) and healthy control (HC) PBMCs or THP-1 cells incubated with the plasma of these participants. Transcriptomic analyses revealed suppression of cytokine-enriched immune-related genes (IL-1ß, CXCL8, CREM), implicating lipopolysaccharide tolerance in innate immune cells (monocytes) of CF probands and their parents. These data suggest that a homozygous as well as a heterozygous CFTR mutation can modulate the immune/inflammatory system. This conclusion is further supported by the finding of lower numbers of circulating monocytes in CF probands and their parents, compared with HCs, and the abundance of mononuclear phagocyte subsets, which correlated with Pseudomonas aeruginosa infection, lung disease severity, and CF progression in the probands. This study provides insight into demonstrated CFTR-related innate immune dysfunction in individuals with CF and carriers of a CFTR mutation that may serve as a target for personalized therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Macrófagos , Monócitos , Fibrose Cística/genética , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Leucócitos Mononucleares , Macrófagos/patologia , Monócitos/patologia , Pais
20.
Metabolites ; 12(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35208252

RESUMO

A large percentage of infants develop viral bronchiolitis needing medical intervention and often develop further airway disease such as asthma. To characterize metabolic perturbations in acute respiratory syncytial viral (RSV) bronchiolitis, we compared metabolomic profiles of moderate and severe RSV patients versus sedation controls. RSV patients were classified as moderate or severe based on the need for invasive mechanical ventilation. Whole blood and urine samples were collected at two time points (baseline and 72 h). Plasma and urinary metabolites were extracted in cold methanol and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and data from the two biofluids were combined for multivariate data analysis. Metabolite profiles were clustered according to severity, characterized by unique metabolic changes in both plasma and urine. Plasma metabolites that correlated with severity included intermediates in the sialic acid biosynthesis, while urinary metabolites included citrate as well as multiple nucleotides. Furthermore, metabolomic profiles were predictive of future development of asthma, with urinary metabolites exhibiting higher predictive power than plasma. These metabolites may offer unique insights into the pathology of RSV bronchiolitis and may be useful in identifying patients at risk for developing asthma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA