Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(19)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39408543

RESUMO

Binary and ternary copolymers of acrylonitrile (AN), tert-butyl acrylate (TBA), and n-butyl acrylate (BA) are synthesized through conventional radical polymerization in DMSO in the presence of 2-mercaptoethanol. The thermal behavior of binary and ternary copolymers is studied under argon atmosphere and in air. It is demonstrated that the copolymers of AN contain 1-10 mol.% of TBA split isobutylene upon heating above 160 °C, resulting in the formation of the units of acrylic acid in the chain. The carboxylic groups formed in situ are responsible for the ionic mechanism of cyclization, which starts at lower temperatures compared with pure polyacrylonitrile (PAN) or AN copolymer with BA. The activation energy of cyclization through ionic and radical mechanisms depends on copolymer composition. For the ionic mechanism, the activation energy lies in the range ca. 100-130 kJ/mole, while for the radical mechanism, it lies in the range ca. 150-190 kJ/mole. The increase in the TBA molar part in the copolymer is followed by faster consumption of nitrile groups and the evolution of a ladder structure in both binary and ternary copolymers. Thus, the incorporation of a certain amount of TBA in PAN or its copolymer with BA allows tuning the temperature range of cyclization. This feature seems attractive for applications in the production of melt-spun PAN by choosing the appropriate copolymer composition and heating mode.

2.
Polymers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794601

RESUMO

Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.

3.
Polymers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36501614

RESUMO

The review summarizes recent advances in the production of carbon fiber precursors based on melt-spun acrylonitrile copolymers. Approaches to decrease the melting point of polyacrylonitrile and acrylonitrile copolymers are analyzed, including copolymerization with inert comonomers, plasticization by various solvents and additives, among them the eco-friendly ways to use the carbon dioxide and ionic liquids. The methods for preliminary modification of precursors that provides the thermal oxidative stabilization of the fibers without their melting and the reduction in the stabilization duration without the loss of the mechanical characteristics of the fibers are discussed. Special attention is paid to different ways of crosslinking by irradiation with different sources. Examples of the carbon fibers preparation from melt-processable acrylonitrile copolymers are considered in detail. A patent search was carried out and the information on the methods for producing carbon fibers from precursors based on melt-spun acrylonitrile copolymers are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA