Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394060

RESUMO

BACKGROUND: Bacterial pneumonia and sepsis are both common causes of end-organ dysfunction, especially in immunocompromised and critically ill patients. Pre-clinical data demonstrate that bacterial pneumonia and sepsis elicit the production of cytotoxic tau and amyloids from pulmonary endothelial cells, which cause lung and brain injury in naïve animal subjects, independent of the primary infection. The contribution of infection-elicited cytotoxic tau and amyloids to end-organ dysfunction has not been examined in the clinical setting. We hypothesized that cytotoxic tau and amyloids are present in the bronchoalveolar lavage fluid of critically ill patients with bacterial pneumonia and that these tau/amyloids are associated with end-organ dysfunction. METHODS: Bacterial culture-positive and culture-negative mechanically ventilated patients were recruited into a prospective, exploratory observational study. Levels of tau and Aß42 in, and cytotoxicity of, the bronchoalveolar lavage fluid were measured. Cytotoxic tau and amyloid concentrations were examined in comparison with patient clinical characteristics, including measures of end-organ dysfunction. RESULTS: Tau and Aß42 were increased in culture-positive patients (n = 49) compared to culture-negative patients (n = 50), independent of the causative bacterial organism. The mean age of patients was 52.1 ± 16.72 years old in the culture-positive group and 52.78 ± 18.18 years old in the culture-negative group. Males comprised 65.3% of the culture-positive group and 56% of the culture-negative group. Caucasian culture-positive patients had increased tau, boiled tau, and Aß42 compared to both Caucasian and minority culture-negative patients. The increase in cytotoxins was most evident in males of all ages, and their presence was associated with end-organ dysfunction. CONCLUSIONS: Bacterial infection promotes the generation of cytotoxic tau and Aß42 within the lung, and these cytotoxins contribute to end-organ dysfunction among critically ill patients. This work illuminates an unappreciated mechanism of injury in critical illness.


Assuntos
Pneumonia Bacteriana , Sepse , Masculino , Animais , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Prospectivos , Estado Terminal , Células Endoteliais , Insuficiência de Múltiplos Órgãos , Irrigação Terapêutica , Líquido da Lavagem Broncoalveolar/microbiologia , Pneumonia Bacteriana/microbiologia , Amiloide , Citotoxinas , Peptídeos beta-Amiloides , Proteínas tau
2.
Glia ; 71(3): 485-508, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36380708

RESUMO

A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1ß, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , RNA/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/metabolismo , Astrócitos/metabolismo , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/metabolismo , Mediadores da Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA