Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770373

RESUMO

The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an alternate magnetic field. The ACB technique presents some interesting characteristics: non-invasiveness, low operational cost, high portability, and no need for magnetic shielding. ACB conventional methods until now provided only qualitative information about the MNPs' mapping in small animals. We present a theoretical model and experimentally demonstrate the feasibility of ACB reconstructing 2D quantitative images of MNPs' distributions. We employed an ACB single-channel scanning approach, measuring at 361 sensor positions, to reconstruct MNPs' spatial distributions. For this, we established a discrete forward problem and solved the ACB system's inverse problem. Thus, we were able to determine the positions and quantities of MNPs in a field of view of 5×5×1 cm3 with good precision and accuracy. The results show the ACB system's capabilities to reconstruct the quantitative spatial distribution of MNPs with a spatial resolution better than 1 cm, and a sensitivity of 1.17 mg of MNPs fixed in gypsum. These results show the system's potential for biomedical application of MNPs in several studies, for example, electrochemical-functionalized MNPs for cancer cell targeting, quantitative sensing, and possibly in vivo imaging.


Assuntos
Nanopartículas de Magnetita , Animais , Diagnóstico por Imagem , Campos Magnéticos , Magnetismo , Cintilografia
2.
Nanomedicine (Lond) ; 16(24): 2189-2206, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34533056

RESUMO

Background: We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and in vivo circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. Methods: We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Results: Higher CP formation led to a greater reduction in the in vitro ACB signal intensity and circulation time. We found fewer proteins forming the CP for the bovine serum albumin-coated MNPs, which presented the highest circulation time in vivo among the MNPs studied. Conclusion: These data showed better biocompatibility, stability and magnetic signal uniformity in biological media for bovine serum albumin-coated MNPs than for citrate-coated MNPs and bare MNPs.


Assuntos
Nanopartículas de Magnetita , Coroa de Proteína , Materiais Biocompatíveis , Magnetismo , Soroalbumina Bovina
3.
Neurogastroenterol Motil ; 33(11): e14169, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33969918

RESUMO

BACKGROUND: Gastroparesis is a chronic stomach disorder and effective treatment is the aim of different strategies. Alternative therapies consist of an electrical stimulation of the stomach to evoke a response in the gastric activity. We present the development and in vivo application of an electromagnet system to induce a mechanical stimulus in the stomach aiming for gastric contractile responses. METHODS: The electromagnet system consisted of an implantable magnet and an external drive coil. We implanted the magnet at the greater curvature of the gastric body in rats. We applied an alternating current to the drive coils, inducing mechanical stimulation of the gastric wall. We measured the gastric contraction activity and gastric electrical activity in response to the stimulus using AC biosusceptometry and electrogastrography. Moreover, we used the phenol red to evaluate the stimulus effects on gastrointestinal transit. KEY RESULTS: The stimulus increased the spectral intensity and signal-to-noise ratio significantly of gastric contraction activity and gastric electrical activity. Furthermore, we found a lower phenol red retention in the stomach in rats without stimulus. No significant differences were found in frequency and root mean square amplitude. CONCLUSIONS & INFERENCES: We developed a new simple electromagnet system that evoked a contraction and gastric electrical response using a mechanical stimulus and decreased gastric emptying time. The system is an accessible tool and may contribute to gastroparesis studies in animals.


Assuntos
Gastroparesia/fisiopatologia , Magnetoterapia/métodos , Estômago/fisiopatologia , Animais , Trânsito Gastrointestinal , Masculino , Ratos Wistar
4.
Eur J Pharm Biopharm ; 161: 50-55, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33592280

RESUMO

A magnetic enteric-coated tablet containing diclofenac sodium was produced, and its performance under physiological and disturbed gastrointestinal motility was assessed through pharmacomagnetography analysis. In vitro studies were performed using conventional methods and in vivo studies were conducted on healthy volunteers before (control) and after domperidone administration. The magnetic tablet's gastrointestinal (GI) transit and disintegration process were monitored using the Alternating Current Biosusceptometry sensors combined with drug plasmatic concentration. The Gastric Residence Time, Colon Arrival Time, Small Bowel Transit Time, Disintegration Time and the pharmacokinetics parameters were calculated. The pH-dependent polymers used to coat the magnetic tablets were able to avoid the premature drug release on gastric or small intestine simulated medium. Gastric Residence Time was accelerated compared with the control group (p < 0.01). No significant differences were found regarding small bowel transit, colon arrival, disintegration process, or pharmacokinetics parameters. A strong correlation between magnetic monitoring and pharmacokinetics parameters analysis was determinant to evaluate the efficiency in the drug delivery at a specific site in the human gastrointestinal tract. In addition, a tablet with a damaged coating was used as a proof of concept to show the suitability of our methodology to evaluate the tablet. Our study showed that pharmacomagnetography is a multi-instrumental approach towards assessing drug delivery and bioavailability.


Assuntos
Domperidona/administração & dosagem , Sistemas de Liberação de Medicamentos , Fenômenos Magnéticos , Polímeros/química , Adulto , Disponibilidade Biológica , Química Farmacêutica , Domperidona/farmacocinética , Método Duplo-Cego , Liberação Controlada de Fármacos , Feminino , Motilidade Gastrointestinal , Trato Gastrointestinal/metabolismo , Trânsito Gastrointestinal , Humanos , Concentração de Íons de Hidrogênio , Masculino , Comprimidos com Revestimento Entérico , Distribuição Tecidual , Adulto Jovem
5.
Biomed Tech (Berl) ; 65(3): 343-351, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31714878

RESUMO

Cerebral blood flow (CBF) assessment is mainly performed by scintigraphy, computed tomography (CT) and magnetic resonance imaging (MRI). New approaches to assess the CBF through the passage of magnetic nanoparticles (MNPs) to blood-brain barrier (BBB) are convenient to help decrease the use of ionizing radiation and unleash the required MRI schedule in clinics. The development of nanomedicine and new biomedical devices, such as the magnetic particle imaging (MPI), enabled new approaches to study dynamic brain blood flow. In this paper, we employed MNPs and the alternating current biosusceptometry (ACB) to study the brain perfusion. We utilized the mannitol, before the MNPs, injection to modulate the BBB permeability and study its effects on the circulation time of the MNPs in the brain of rats. Also, we characterized a new ACB sensor to increase the systems' applicability to study the MNPs' accumulation, especially in the animals' brain. Our data showed that the injection of mannitol increased the circulation time of MNPs in the brain. Also, the mannitol increased the accumulation of MNPs in the brain. This paper suggests the use of the ACB as a tool to study brain perfusion and accumulation of MNPs in studies of new nano agents focused on the brain diagnostics and treatment.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Nanopartículas de Magnetita , Masculino , Perfusão/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA