Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
J Can Chiropr Assoc ; 67(1): 85-96, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37250464

RESUMO

Objective: To describe the differential diagnosis, diagnosis, and chiropractic management of a case of chronic upper extremity paresthesia. Clinical features: A 24-year-old woman presented with recent neck stiffness, along with a primary complaint of chronic upper extremity paresthesia and hand weakness of insidious onset. Intervention and outcome: Results of previous electro-diagnostic and advanced imaging studies were combined with clinical assessment to diagnose thoracic outlet syndrome (TOS). Discontinuing after five weeks of chiropractic management, the patient reported significant improvement of paresthesia but less improvement of her hand weakness. Summary: Several etiologies can give rise to symptoms in common with TOS. It is imperative to rule out mimicking conditions. A battery of clinical orthopedic tests has been proposed in the literature for the diagnosis of TOS but with reported questionable validity. As a result, TOS is mostly a diagnosis of exclusion. Chiropractic treatment shows potential for effective management of TOS, but research is required.


Objectif: Décrire le diagnostic différentiel, le diagnostic et la prise en charge chiropratique d'un cas de paresthésie chronique des membres supérieurs. Caractéristiques cliniques: Une femme de 24 ans s'est présentée avec une raideur de la nuque récente, ainsi qu'avec une plainte primaire de paresthésie chronique des membres supérieurs et de faiblesse de la main d'apparition insidieuse. Intervention et résultats: Les résultats d'un électrodiagnostic antérieur et d'examens d'imagerie avancée ont été combinés à une évaluation clinique pour diagnostiquer un syndrome du défilé thoraco-brachial. Après cinq semaines de traitement chiropratique, la patiente a signalé une amélioration significative de ses paresthésies, mais une amélioration moindre de la faiblesse de sa main. Résumé: Plusieurs étiologies peuvent donner lieu à des symptômes communs avec le syndrome du défilé thoraco-brachial. Il est impératif d'exclure les affections mimétiques. Une batterie de tests orthopédiques cliniques a été proposée dans la littérature pour le diagnostic du syndrome du défilé thoraco-brachial, mais leur validité est discutable. Par conséquent, le syndrome du défilé thoraco-brachial est le plus souvent un diagnostic d'exclusion. La chiropratique est susceptible de permettre une prise en charge efficace du syndrome du défilé thoraco-brachial, mais des recherches s'imposent.

4.
J Vis Exp ; (186)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36121286

RESUMO

Low back pain is the leading cause of disability worldwide, with dramatic personal, economic, and social consequences. To develop novel therapeutics, animal models are needed to examine the mechanisms and effectiveness of novel therapies from a translational perspective. Several rodent models of back pain are used in current investigations. Surprisingly, however, no standardized behavioral test was validated to assess mechanical sensitivity in back pain models. This is critical to confirm that animals with presumed back pain present local hypersensitivity to nociceptive stimuli, and to monitor sensitivity during interventions designed to relieve back pain. The objective of this study is to lay down a simple and accessible test to assess mechanical sensitivity in the back of rats. A test cage was fabricated specifically for this method; length x width x height: 50 x 20 x 7 cm, having a stainless-steel mesh on the top. This test cage allows the application of mechanical stimuli to the back. To perform the test, the back of the animal is shaved in the region of interest, and the test area is marked to repeat the test on different days, as needed. The mechanical threshold is determined with Von Frey filaments applied to the paraspinal muscles, utilizing the up-down method described previously. The positive responses include (1) muscle twitching, (2) arching (back extension), (3) rotation of the neck (4) scratching or licking the back, and (5) escaping. This behavioral test (Back Mechanical Sensitivity (BMS) test) is useful for mechanistic research with rodent models of back pain for the development of therapeutic interventions for the prevention and management of back pain.


Assuntos
Dor Lombar , Animais , Comportamento Animal , , Ratos , Roedores , Aço
5.
J Microsc ; 287(1): 19-31, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35415878

RESUMO

The visualisation and quantification of pore networks and main phases have been critical research topics in cementitious materials as many critical mechanical and chemical properties and infrastructure reliability rely on these 3D characteristics. In this study, we realised the mesoscale serial sectioning and analysis up to ∼80 µm by ∼90 µm by ∼60 µm on portland cement mortar using plasma focused ion beam (PFIB) for the first time. The workflow of working with mortar and PFIB was established applying a prepositioned hard silicon mask to reduce curtaining. Segmentation with minimal human interference was performed using a trained neural network, in which multiple types of segmentation models were compared. Combining PFIB analysis at microscale with X-ray micro-computed tomography, the analysis of capillary pores and air voids ranging from hundreds of nanometres (nm) to millimetres (mm) can be conducted. The volume fraction of large capillary pores and air voids are 11.5% and 12.7%, respectively. Moreover, the skeletonisation of connected capillary pores clearly shows fluid transport pathways, which is a key factor determining durability performance of concrete in aggressive environments. Another interesting aspect of the FIB tomography is the reconstruction of anhydrous phases, which could enable direct study of hydration kinetics of individual cement phases.

6.
J Physiol Sci ; 71(1): 20, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167458

RESUMO

The aim of this study was to examine the mechanisms underlying hypoalgesia induced by spinal manipulation (SM). Eighty-two healthy volunteers were assigned to one of the four intervention groups: no intervention, SM at T4 (homosegmental to pain), SM at T8 (heterosegmental to pain) or light mechanical stimulus at T4 (placebo). Eighty laser stimuli were applied on back skin at T4 to evoke pain and brain activity related to Aδ- and C-fibers activation. The intervention was performed after 40 stimuli. Laser pain was decreased by SM at T4 (p = 0.028) but not T8 (p = 0.13), compared with placebo. However, brain activity related to Aδ-fibers activation was not significantly modulated (all p > 0.05), while C-fiber activity could not be measured reliably. This indicates that SM produces segmental hypoalgesia through inhibition of nociceptive processes that are independent of Aδ fibers. It remains to be clarified whether the effect is mediated by the inhibition of C-fiber activity.


Assuntos
Encéfalo/fisiologia , Manipulação da Coluna , Dor/prevenção & controle , Adulto , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Lasers/efeitos adversos , Masculino , Manipulação da Coluna/métodos
7.
Eur J Pain ; 25(7): 1429-1448, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786932

RESUMO

Together, neck pain and back pain are the first cause of disability worldwide, accounting for more than 10% of the total years lived with disability. In this context, chiropractic care provides a safe and effective option for the management of a large proportion of these patients. Chiropractic is a healthcare profession mainly focused on the spine and the treatment of spinal disorders, including spine pain. Basic studies have examined the influence of chiropractic spinal manipulation (SM) on a variety of peripheral, spinal and supraspinal mechanisms involved in spine pain. While spinal cord mechanisms of pain inhibition contribute at least partly to the pain-relieving effects of chiropractic treatments, the evidence is weaker regarding peripheral and supraspinal mechanisms, which are important components of acute and chronic pain. This narrative review highlights the most relevant mechanisms of pain relief by SM and provides a perspective for future research on SM and spine pain, including the validation of placebo interventions that control for placebo effects and other non-specific effects that may be induced by SM. SIGNIFICANCE: Spinal manipulation inhibits back and neck pain partly through spinal segmental mechanisms and potentially through peripheral mechanisms regulating inflammatory responses. Other mechanisms remain to be clarified. Controls and placebo interventions need to be improved in order to clarify the contribution of specific and non-specific effects to pain relief by spinal manipulative therapy.


Assuntos
Quiroprática , Manipulação Quiroprática , Manipulação da Coluna , Dor nas Costas/terapia , Humanos , Cervicalgia/terapia , Placebos
8.
Front Pain Res (Lausanne) ; 2: 765921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295422

RESUMO

Spine pain is a highly prevalent condition affecting over 11% of the world's population. It is the single leading cause of activity limitation and ranks fourth in years lost to disability globally, representing a significant personal, social, and economic burden. For the vast majority of patients with back and neck pain, a specific pathology cannot be identified as the cause for their pain, which is then labeled as non-specific. In a growing proportion of these cases, pain persists beyond 3 months and is referred to as chronic primary back or neck pain. To decrease the global burden of spine pain, current data suggest that a conservative approach may be preferable. One of the conservative management options available is spinal manipulative therapy (SMT), the main intervention used by chiropractors and other manual therapists. The aim of this narrative review is to highlight the most relevant and up-to-date evidence on the effectiveness (as it compares to other interventions in more pragmatic settings) and efficacy (as it compares to inactive controls under highly controlled conditions) of SMT for the management of neck pain and low back pain. Additionally, a perspective on the current recommendations on SMT for spine pain and the needs for future research will be provided. In summary, SMT may be as effective as other recommended therapies for the management of non-specific and chronic primary spine pain, including standard medical care or physical therapy. Currently, SMT is recommended in combination with exercise for neck pain as part of a multimodal approach. It may also be recommended as a frontline intervention for low back pain. Despite some remaining discrepancies, current clinical practice guidelines almost universally recommend the use of SMT for spine pain. Due to the low quality of evidence, the efficacy of SMT compared with a placebo or no treatment remains uncertain. Therefore, future research is needed to clarify the specific effects of SMT to further validate this intervention. In addition, factors that predict these effects remain to be determined to target patients who are more likely to obtain positive outcomes from SMT.

9.
Front Pain Res (Lausanne) ; 2: 733727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295444

RESUMO

Musculoskeletal injuries lead to sensitization of nociceptors and primary hyperalgesia (hypersensitivity to painful stimuli). This occurs with back injuries, which are associated with acute pain and increased pain sensitivity at the site of injury. In some cases, back pain persists and leads to central sensitization and chronic pain. Thus, reducing primary hyperalgesia to prevent central sensitization may limit the transition from acute to chronic back pain. It has been shown that spinal manipulation (SM) reduces experimental and clinical pain, but the effect of SM on primary hyperalgesia and hypersensitivity to painful stimuli remains unclear. The goal of the present study was to investigate the effect of SM on pain hypersensitivity using a capsaicin-heat pain model. Laser stimulation was used to evoke heat pain and the associated brain activity, which were measured to assess their modulation by SM. Eighty healthy participants were recruited and randomly assigned to one of the four experimental groups: inert cream and no intervention; capsaicin cream and no intervention; capsaicin cream and SM at T7; capsaicin cream and placebo. Inert or capsaicin cream (1%) was applied to the T9 area. SM or placebo were performed 25 min after cream application. A series of laser stimuli were delivered on the area of cream application (1) before cream application, (2) after cream application but before SM or placebo, and (3) after SM or placebo. Capsaicin cream induced a significant increase in laser pain (p < 0.001) and laser-evoked potential amplitude (p < 0.001). However, SM did not decrease the amplification of laser pain or laser-evoked potentials by capsaicin. These results indicate that segmental SM does not reduce pain hypersensitivity and the associated pain-related brain activity in a capsaicin-heat pain model.

10.
Front Pain Res (Lausanne) ; 2: 702429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295504

RESUMO

Background and Aims: Spinal manipulation (SM) is currently recommended for the management of back pain. Experimental studies indicate that the hypoalgesic mechanisms of SM may rely on inhibition of segmental processes related to temporal summation of pain and, possibly, on central sensitization, although this remains unclear. The aim of this study was to determine whether experimental back pain, secondary hyperalgesia, and pain-related brain activity induced by capsaicin are decreased by segmental SM. Methods: Seventy-three healthy volunteers were randomly allocated to one of four experimental groups: SM at T5 vertebral level (segmental), SM at T9 vertebral level (heterosegmental), placebo intervention at T5 vertebral level, or no intervention. Topical capsaicin was applied to the area of T5 vertebra for 40 min. After 20 min, the interventions were administered. Pressure pain thresholds (PPTs) were assessed outside the area of capsaicin application at 0 and 40 min to examine secondary hyperalgesia. Capsaicin pain intensity and unpleasantness were reported every 4 min. Frontal high-gamma oscillations were also measured with electroencephalography. Results: Pain ratings and brain activity were not significantly different between groups over time (p > 0.5). However, PPTs were significantly decreased in the placebo and control groups (p < 0.01), indicative of secondary hyperalgesia, while no hyperalgesia was observed for groups receiving SM (p = 1.0). This effect was independent of expectations and greater than placebo for segmental (p < 0.01) but not heterosegmental SM (p = 1.0). Conclusions: These results indicate that segmental SM can prevent secondary hyperalgesia, independently of expectations. This has implications for the management of back pain, particularly when central sensitization is involved.

12.
J Struct Biol ; 212(1): 107598, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783967

RESUMO

Biomineralization research examines structure-function relations in all types of exo- and endo-skeletons and other hard tissues of living organisms, and it relies heavily on 3D imaging. Segmentation of 3D renderings of biomineralized structures has long been a bottleneck because of human limitations such as our available time, attention span, eye-hand coordination, cognitive biases, and attainable precision, amongst other limitations. Since recently, some of these routine limitations appear to be surmountable thanks to the development of deep-learning algorithms for biological imagery in general, and for 3D image segmentation in particular. Many components of deep learning often appear too abstract for a life scientist. Despite this, the basic principles underlying deep learning have many easy-to-grasp commonalities with human learning and universal logic. This primer presents these basic principles in what we feel is an intuitive manner, without relying on prerequisite knowledge of informatics and computer science, and with the aim of improving the reader's general literacy in artificial intelligence and deep learning. Here, biomineralization case studies are presented to illustrate the application of deep learning for solving segmentation and analysis problems of 3D images ridden by various artifacts, and/or which are plainly difficult to interpret. The presented portfolio of case studies includes three examples of imaging using micro-computed tomography (µCT), and three examples using focused-ion beam scanning electron microscopy (FIB-SEM), all on mineralized tissues. We believe this primer will expand the circle of users of deep learning amongst biomineralization researchers and other life scientists involved with 3D imaging, and will encourage incorporation of this powerful tool into their professional skillsets and to explore it further.


Assuntos
Biomineralização/fisiologia , Imageamento Tridimensional/métodos , Algoritmos , Animais , Inteligência Artificial , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
13.
Eur J Neurosci ; 44(1): 1771-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27086672

RESUMO

Heterotopic noxious counter-stimulation (HNCS) inhibits pain and pain processes through cerebral and cerebrospinal mechanisms. However, it is unclear whether HNCS inhibits non-nociceptive processes, which needs to be clarified for a better understanding of HNCS analgesia. The aim of this study was to examine the effects of HNCS on perception and scalp somatosensory evoked potentials (SEPs). Seventeen healthy volunteers participated in two counter-balanced sessions, including non-nociceptive (selective Aß-fibre activation) or nociceptive electrical stimulation, combined with HNCS. HNCS was produced by a 20-min cold pressor test (left hand) adjusted individually to produce moderate pain (mean ± SEM: 42.5 ± 5.3 on a 0-100 scale, where 0 is no pain and 100 the worst pain imaginable). Non-nociceptive electrical stimulation was adjusted individually at 80% of pain threshold and produced a tactile sensation in every subject. Nociceptive electrical stimulation was adjusted individually at 120% of RIII-reflex threshold and produced moderate pain (45.3 ± 4.5). Shock sensation was significantly decreased by HNCS compared with baseline for non-nociceptive (P < 0.001) and nociceptive (P < 0.001) stimulation. SEP peak-to-peak amplitude at Cz was significantly decreased by HNCS for non-nociceptive (P < 0.01) and nociceptive (P < 0.05) stimulation. These results indicate that perception and brain activity related to Aß-fibre activation are inhibited by HNCS. The mechanisms of this effect remain to be investigated to clarify whether it involves inhibition of spinal wide-dynamic-range neurons by diffuse noxious inhibitory controls, supraspinal processes or both.


Assuntos
Encéfalo/fisiologia , Controle Inibitório Nociceptivo Difuso/fisiologia , Potenciais Somatossensoriais Evocados , Fibras Nervosas/fisiologia , Dor Nociceptiva/fisiopatologia , Percepção da Dor , Adulto , Feminino , Humanos , Masculino
14.
Pain ; 153(8): 1755-1762, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22717100

RESUMO

Heterotopic noxious counterstimulation (HNCS) by the application of a sustained noxious stimulus has been shown to inhibit nociceptive processes and decrease pain induced by a competing noxious stimulus. However, it is still not clear how attentional processes contribute to these effects. The main objective of this study was to compare the analgesic effects of HNCS in 2 sessions during which top-down attention was manipulated. Acute shock pain and the nociceptive flexion reflex were evoked by transcutaneous electrical stimulations of the right sural nerve in 4 blocks (15 stimuli/block): baseline, heterotopic innocuous counterstimulation (HICS), HNCS, and recovery. Counterstimulation was applied on the left upper limb with a thermode (HICS) or a cold pack (HNCS). Attention was manipulated between sessions by instructing participants to focus their attention on shock pain or counterstimulation. Shock pain ratings decreased significantly during counterstimulation (P<.001) with stronger effects of HNCS vs HICS in both sessions (P<.01). Furthermore, shock pain inhibition during HNCS relative to baseline was stronger with attention focusing on counterstimulation compared to attention focusing on shocks (P = .015). However, the relative decrease in pain ratings during HNCS vs HICS was not significantly affected by the direction of attention (P = .7). As for spinal nociceptive processes, nociceptive flexion reflex amplitude was significantly decreased during counterstimulation (P<.001) with larger reductions during HNCS compared to HICS (P = .03). However, these effects were not altered by attention (P = .35). Together, these results demonstrate that top-down attention and HNCS produce additive analgesic effects. However, attentional modulation of HNCS analgesia seems to depend on supraspinal processes.


Assuntos
Condicionamento Clássico , Cardioversão Elétrica/métodos , Estimulação Elétrica/métodos , Percepção da Dor/fisiologia , Limiar da Dor , Dor/prevenção & controle , Dor/fisiopatologia , Adaptação Fisiológica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reflexo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA