Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Sci Transl Med ; 16(767): eadn2366, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356745

RESUMO

Globally, severe acute malnutrition (SAM), defined as a weight-for-length z-score more than three SDs below a reference mean (WLZ < -3), affects 14 million children under 5 years of age. Complete anthropometric recovery after standard, short-term interventions is rare, with children often left with moderate acute malnutrition (MAM; WLZ -2 to -3). We conducted a randomized controlled trial (RCT) involving 12- to 18-month-old Bangladeshi children from urban and rural sites, who, after initial hospital-based treatment for SAM, received a 3-month intervention with a microbiome-directed complementary food (MDCF-2) or a calorically more dense, standard ready-to-use supplementary food (RUSF). The rate of WLZ improvement was significantly greater in MDCF-2-treated children (P = 8.73 × 10-3), similar to our previous RCT of Bangladeshi children with MAM without antecedent SAM (P = 0.032). A correlated meta-analysis of plasma levels of 4520 proteins in both RCTs revealed 215 positively associated with WLZ (largely representing musculoskeletal and central nervous system development) and 44 negatively associated (primarily related to immune activation). Moreover, the positively associated proteins were significantly enriched by MDCF-2 (q = 1.1 × 10-6). Characterizing the abundances of 754 bacterial metagenome-assembled genomes in serially collected fecal samples disclosed the effects of acute rehabilitation for SAM on the microbiome and how, during treatment for MAM, specific strains of Prevotella copri function at the intersection between MDCF-2 glycan metabolism and anthropometric recovery. These results provide a rationale for further testing the generalizability of MDCF efficacy and for identifying biomarkers to define treatment responses.


Assuntos
Desnutrição Aguda Grave , Humanos , Desnutrição Aguda Grave/dietoterapia , Desnutrição Aguda Grave/terapia , Lactente , Microbiota , Masculino , Feminino , Bangladesh , Microbioma Gastrointestinal
2.
Hum Genet ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276247

RESUMO

The Long Life Family Study (LLFS) enrolled 4953 participants in 539 pedigrees displaying exceptional longevity. To identify genetic mechanisms that affect cardiovascular risks in the LLFS population, we developed a multi-omics integration pipeline and applied it to 11 traits associated with cardiovascular risks. Using our pipeline, we aggregated gene-level statistics from rare-variant analysis, GWAS, and gene expression-trait association by Correlated Meta-Analysis (CMA). Across all traits, CMA identified 64 significant genes after Bonferroni correction (p ≤ 2.8 × 10-7), 29 of which replicated in the Framingham Heart Study (FHS) cohort. Notably, 20 of the 29 replicated genes do not have a previously known trait-associated variant in the GWAS Catalog within 50 kb. Thirteen modules in Protein-Protein Interaction (PPI) networks are significantly enriched in genes with low meta-analysis p-values for at least one trait, three of which are replicated in the FHS cohort. The functional annotation of genes in these modules showed a significant over-representation of trait-related biological processes including sterol transport, protein-lipid complex remodeling, and immune response regulation. Among major findings, our results suggest a role of triglyceride-associated and mast-cell functional genes FCER1A, MS4A2, GATA2, HDC, and HRH4 in atherosclerosis risks. Our findings also suggest that lower expression of ATG2A, a gene we found to be associated with BMI, may be both a cause and consequence of obesity. Finally, our results suggest that ENPP3 may play an intermediary role in triglyceride-induced inflammation. Our pipeline is freely available and implemented in the Nextflow workflow language, making it easily runnable on any compute platform ( https://nf-co.re/omicsgenetraitassociation ).

3.
bioRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39282361

RESUMO

Multi-omic data can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, our novel contributions are that we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, visualized and evaluated a set of AD associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. Moreover, the signaling sources are highlighted at specific omic levels to facilitate the understanding of the pathogenesis of AD. The proposed model can also be applied and expanded for other studies using multi-omic data. Model code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.

4.
medRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108533

RESUMO

Background: Previous researched has demonstrated potent health and survival advantages across three-generations in longevity-enriched families. However, the survival advantage associated with familial longevity may manifest earlier in life than previously thought. Methods: We conducted a matched cohort study comparing early health trajectories in third-generation grandchildren (n = 5,637) and fourth-generation great-grandchildren (n = 14,908) of longevity-enriched sibships to demographically matched births (n = 41,090) in Denmark between 1973 and 2018. Results: Lower risk was observed across a range of adverse early life outcomes in the grandchildren, including infant mortality (Hazard Ratio (HR) = 0.53, 95% CI [0.36, 0.77]), preterm birth (Odds Ratio (OR) = 0.82, [0.72, 0.93]), small for gestational age (OR = 0.83, [0.76, 0.90]) and neonatal respiratory disorders (OR = 0.77, [0.67, 0.88]). Relative advantages in parental education and maternal smoking were observed in both generations to a similar degree. However, a much smaller reduction in infant mortality was observed in the great-grandchildren (HR = 0.90, [0.70, 1.17]) and benefits across other outcomes were also less consistent, despite persisting socioeconomic and behavioural advantages. Lastly, maternal, and paternal lines of transmission were equipotent in the transmission of infant survival advantages. Conclusions: Descendants of longevity-enriched sibships exhibit a broad health advantage manifesting as early the perinatal period. However, this effect is strongly diluted over successive generations. Our findings suggest that exceptional health and survival may have early developmental components and implicate heritable genetic and or epigenetic factors in their specific transmission.

5.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149314

RESUMO

Generative pretrained models represent a significant advancement in natural language processing and computer vision, which can generate coherent and contextually relevant content based on the pre-training on large general datasets and fine-tune for specific tasks. Building foundation models using large scale omic data is promising to decode and understand the complex signaling language patterns within cells. Different from existing foundation models of omic data, we build a foundation model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic data was integrated and interpreted using a multi-level signaling graph. The model was pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and fine-turned for multi-omic data of Alzheimer's Disease (AD). The experimental evaluation results showed that the model can not only improve the disease classification accuracy, but also is interpretable by uncovering disease targets and signaling interactions. And the model code are uploaded via GitHub with link: https://github.com/mosGraph/mosGraphGPT.

6.
medRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39132492

RESUMO

Studying relationships between longitudinal changes in omics variables and risks of events requires specific methodologies for joint analyses of longitudinal and time-to-event outcomes. We applied two such approaches (joint models [JM], stochastic process models [SPM]) to longitudinal metabolomics data from the Long Life Family Study focusing on understudied associations of longitudinal changes in lysophosphatidylcholines (LPC) with mortality and aging-related outcomes (23 LPC species, 5,790 measurements of each in 4,011 participants, 1,431 of whom died during follow-up). JM analyses found that higher levels of the majority of LPC species were associated with lower mortality risks, with the largest effect size observed for LPC 15:0/0:0 (hazard ratio: 0.715, 95% CI (0.649, 0.788)). SPM applications to LPC 15:0/0:0 revealed how the association found in JM reflects underlying aging-related processes: decline in robustness to deviations from optimal LPC levels, better ability of males' organisms to return to equilibrium LPC levels (which are higher in females), and increasing gaps between the optimum and equilibrium levels leading to increased mortality risks with age. Our results support LPC as a biomarker of aging and related decline in robustness/resilience, and call for further exploration of factors underlying age-dynamics of LPC in relation to mortality and diseases.

7.
medRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947029

RESUMO

Aims/hypothesis: Triglyceride (TG) /High density lipoprotein cholesterol (HDL-C) ratio (THR) represents a single surrogate predictor of hyperinsulinemia or insulin resistance that is associated with premature aging processes, risk of diabetes and increased mortality. To identify novel genetic loci for THR change over time (ΔTHR), we conducted genome-wide association study (GWAS) and genome-wide linkage scan (GWLS) among subjects of European ancestry who had complete data from two exams collected about seven years apart from the Long Life Family Study (LLFS, n=1384), a study with familial clustering of exceptional longevity in the US and Denmark. Methods: Subjects with diabetes or using medications for dyslipidemia were excluded from this analysis. ΔTHR was derived using growth curve modeling, and adjusted for age, sex, field centers, and principal components (PCs). GWAS was conducted using a linear mixed model accounted for familial relatedness. Our linkage scan was built on haplotype-based IBD estimation with 0.5 cM average spacing. Results: Heritability of ΔTHR was moderate (46%). Our GWAS identified a significant locus at the LPL (p=1.58e-9) for ΔTHR; this gene locus has been reported before influencing baseline THR levels. Our GWLS found evidence for a significant linkage with a logarithm of the odds (LODs) exceeding 3 on 3q28 (LODs=4.1). Using a subset of 25 linkage enriched families (pedigree-specific LODs>0.1), we assessed sequence elements under 3q28 and identified two novel variants (EIF4A2/ADIPOQ-rs114108468, p=5e-6, MAF=1.8%; TPRG1-rs16864075, p=3e-6, MAF=8%; accounted for ~28% and ~29% of the linkage, respectively, and 57% jointly). While the former variant was associated with EIF4A2 (p=7e-5) / ADIPOQ (p=3.49e-2) RNA transcriptional levels, the latter variant was not associated with TPRG1 (p=0.23) RNA transcriptional levels. Replication in FHS OS observed modest effect of these loci on ΔTHR. Of 188 metabolites from 13 compound classes assayed in LLFS, we observed multiple metabolites (e.g., DG.38.5, PE.36.4, TG.58.3) that were significantly associated with the variants (p<3e-4). Conclusions: our linkage-guided sequence analysis approach permitted our discovery of two novel gene variants EIF4A2/ADIPOQ-rs114108468 and TPRG1-rs16864075 on 3q28 for ΔTHR among subjects without diabetes selected for exceptional survival and healthy aging.

8.
medRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38946965

RESUMO

Severe acute malnutrition (SAM), defined anthropometrically as a weight-for-length z-score more than 3 standard deviations below the mean (WLZ<-3), affects 19 million children under 5-years-old worldwide. Complete anthropometric recovery after standard inventions is rare with children often left with moderate acute malnutrition (MAM; WLZ -2 to -3). Here we conduct a randomized controlled trial (RCT), involving 12-18-month-old Bangladeshi children from urban and rural sites, who after hospital-based treatment for SAM received a 3-month intervention with a microbiota-directed complementary food (MDCF-2) or a ready-to-use supplementary food (RUSF) as they transitioned to MAM. The rate of WLZ improvement was significantly greater with MDCF-2 than the more calorically-dense RUSF, as we observed in a previous RCT of Bangladeshi children with MAM without antecedent SAM. A correlated meta-analysis of aptamer-based measurements of 4,520 plasma proteins in this and the prior RCT revealed 215 proteins positively-associated with WLZ (prominently those involved in musculoskeletal and CNS development) and 44 negatively-associated proteins (related to immune activation), with a significant enrichment in levels of the positively WLZ-associated proteins in the MDCF-2 arm. Characterizing changes in 754 bacterial metagenome-assembled genomes in serially collected fecal samples disclosed the effects of acute rehabilitation for SAM on the microbiome, its transition as each child achieves a state of MAM, and how specific strains of Prevotella copri function at the intersection between MDCF-2 glycan metabolism and the rescue of growth faltering. These results provide a rationale for further testing the generalizability of the efficacy of MDCF and identify biomarkers for defining treatment responses.

9.
Aging Cell ; : e14261, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932496

RESUMO

Patients with chronic kidney disease (CKD) have increased oxidative stress and chronic inflammation, which may escalate the production of advanced glycation end-products (AGEs). High soluble receptor for AGE (sRAGE) and low estimated glomerular filtration rate (eGFR) levels are associated with CKD and aging. We evaluated whether eGFR calculated from creatinine and cystatin C share pleiotropic genetic factors with sRAGE. We employed whole-genome sequencing and correlated meta-analyses on combined genome-wide association study (GWAS) p-values in 4182 individuals (age range: 24-110) from the Long Life Family Study (LLFS). We also conducted transcriptome-wide association studies (TWAS) on whole blood in a subset of 1209 individuals. We identified 59 pleiotropic GWAS loci (p < 5 × 10-8) and 17 TWAS genes (Bonferroni-p < 2.73 × 10-6) for eGFR traits and sRAGE. TWAS genes, LSP1 and MIR23AHG, were associated with eGFR and sRAGE located within GWAS loci, lncRNA-KCNQ1OT1 and CACNA1A/CCDC130, respectively. GWAS variants were eQTLs in the kidney glomeruli and tubules, and GWAS genes predicted kidney carcinoma. TWAS genes harbored eQTLs in the kidney, predicted kidney carcinoma, and connected enhancer-promoter variants with kidney function-related phenotypes at p < 5 × 10-8. Additionally, higher allele frequencies of protective variants for eGFR traits were detected in LLFS than in ALFA-Europeans and TOPMed, suggesting better kidney function in healthy-aging LLFS than in general populations. Integrating genomic annotation and transcriptional gene activity revealed the enrichment of genetic elements in kidney function and aging-related processes. The identified pleiotropic loci and gene expressions for eGFR and sRAGE suggest their underlying shared genetic effects and highlight their roles in kidney- and aging-related signaling pathways.

10.
Front Cell Neurosci ; 18: 1369242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846640

RESUMO

Recently, large-scale scRNA-seq datasets have been generated to understand the complex signaling mechanisms within the microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. However, the background signaling networks are highly complex and interactive. It remains challenging to infer the core intra- and inter-multi-cell signaling communication networks using scRNA-seq data. In this study, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy. This model divides complex signaling networks into signaling paths, which are then scored and ranked using a novel graph transformer architecture to infer intra- and inter-cell signaling communications. We evaluated the performance of PathFinder using two scRNA-seq data cohorts. The first cohort is an APOE4 genotype-specific AD, and the second is a human cirrhosis cohort. The evaluation confirms the promising potential of using PathFinder as a general signaling network inference model.

11.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826248

RESUMO

Over Several years, we have developed a system for assuring the quality of whole genome sequence (WGS) data in the LLFS families. We have focused on providing data to identify germline genetic variants with the aim of releasing as many variants on as many individuals as possible. We aim to assure the quality of the individual calls. The availability of family data has enabled us to use and validate some filters not commonly used in population-based studies. We developed slightly different procedures for the autosomal, X, Y, and Mitochondrial (MT) chromosomes. Some of these filters are specific to family data, but some can be used with any WGS data set. We also describe the procedure we use to construct linkage markers from the SNP sequence data and how we compute IBD values for use in linkage analysis.

12.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826208

RESUMO

Glycated hemoglobin (HbA1c) indicates average glucose levels over three months and is associated with insulin resistance and type 2 diabetes (T2D). Longitudinal changes in HbA1c (ΔHbA1c) are also associated with aging processes, cognitive performance, and mortality. We analyzed ΔHbA1c in 1,886 non-diabetic Europeans from the Long Life Family Study to uncover gene variants influencing ΔHbA1c. Using growth curve modeling adjusted for multiple covariates, we derived ΔHbA1c and conducted linkage-guided sequence analysis. Our genome-wide linkage scan identified a significant locus on 17p12. In-depth analysis of this locus revealed a variant rs56340929 (explaining 27% of the linkage peak) in the ARHGAP44 gene that was significantly associated with ΔHbA1c. RNA transcription of ARHGAP44 was associated with ΔHbA1c. The Framingham Offspring Study data further supported these findings on the gene level. Together, we found a novel gene ARHGAP44 for ΔHbA1c in family members without T2D. Follow-up studies using longitudinal omics data in large independent cohorts are warranted.

13.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798349

RESUMO

Multi-omics data, i.e., genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining key disease targets and signaling pathways. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. However, it is non-trivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models. To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of TCGA and Alzheimer's disease (AD) samples. The code of mosGraphGen is open-source and publicly available via GitHub: https://github.com/FuhaiLiAiLab/mosGraphGen.

14.
J Hepatol ; 81(3): 379-388, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38582304

RESUMO

BACKGROUND & AIMS: Steatotic liver disease (SLD), characterized by elevated liver fat content (LFC), is influenced by genetics and diet. However, whether diet has a differential effect based on genetic risk is not well-characterized. We aimed to determine how genetic factors interact with diet to affect SLD in a large national biobank. METHODS: We included UK Biobank participants with dietary intake measured by 24-hour recall and genotyping. The primary predictors were dietary pattern, PNPLA3-rs738409-G, TM6SF2-rs58542926-T, a 16-variant hepatic steatosis polygenic risk score (PRS), and gene-environment interactions. The primary outcome was LFC, and secondary outcomes were iron-controlled T1 time (cT1, a measure of liver inflammation and fibrosis) and liver-related events/mortality. RESULTS: A total of 21,619 participants met inclusion criteria. In non-interaction models, Mediterranean diet and intake of fruit/vegetables/legumes and fish associated with lower LFC, while higher red/processed meat intake and all genetic predictors associated with higher LFC. In interaction models, all genetic predictors interacted with Mediterranean diet and fruit/vegetable/legume intake, while the steatosis PRS interacted with fish intake and the TM6SF2 genotype interacted with red/processed meat intake, to affect LFC. Dietary effects on LFC were up to 3.8-fold higher in PNPLA3-rs738409-GG vs. -CC individuals, and 1.4-3.0-fold higher in the top vs. bottom quartile of the steatosis PRS. Gene-diet interactions were stronger in participants with vs. without overweight. The steatosis PRS interacted with Mediterranean diet and fruit/vegetable/legume intake to affect cT1 and most dietary and genetic predictors associated with risk of liver-related events or mortality by age 70. CONCLUSIONS: Effects of diet on LFC and cT1 were markedly accentuated in patients at increased genetic risk for SLD, implying dietary interventions may be more impactful in these populations. IMPACT AND IMPLICATIONS: Genetic variants and diet both influence risk of hepatic steatosis, inflammation/fibrosis, and hepatic decompensation; however, how gene-diet interactions influence these outcomes has previously not been comprehensively characterized. We investigated this topic in the community-based UK Biobank and found that genetic risk and dietary quality interacted to influence hepatic steatosis and inflammation/fibrosis on liver MRI, so that the effects of diet were greater in people at elevated genetic risk. These results are relevant for patients and medical providers because they show that genetic risk is not fixed (i.e. modifiable factors can mitigate or exacerbate this risk) and realistic dietary changes may result in meaningful improvement in liver steatosis and inflammation/fibrosis. As genotyping becomes more routinely used in clinical practice, patients identified to be at high baseline genetic risk may benefit even more from intensive dietary counseling than those at lower risk, though future prospective studies are required.


Assuntos
Fígado Gorduroso , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/epidemiologia , Idoso , Predisposição Genética para Doença , Lipase/genética , Interação Gene-Ambiente , Proteínas de Membrana/genética , Reino Unido/epidemiologia , Estudos de Coortes , Dieta Mediterrânea , Dieta/efeitos adversos , Dieta/métodos , Inflamação/genética , Inflamação/etiologia , Adulto , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Aciltransferases , Fosfolipases A2 Independentes de Cálcio
15.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293243

RESUMO

Recently, large-scale scRNA-seq datasets have been generated to understand the complex and poorly understood signaling mechanisms within microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. Though a set of targets have been identified, however, it remains a challenging to infer the core intra- and inter-multi-cell signaling communication networks using the scRNA-seq data, considering the complex and highly interactive background signaling network. Herein, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and signaling communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy, which divides the complex signaling networks into signaling paths, and then score and rank them using a novel graph transformer architecture to infer the intra- and inter-cell signaling communications. We evaluated PathFinder using scRNA-seq data of APOE4-genotype specific AD mice models and identified novel APOE4 altered intra- and inter-cell interaction networks among neurons, astrocytes, and microglia. PathFinder is a general signaling network inference model and can be applied to other omics data-driven signaling network inference.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37449765

RESUMO

BACKGROUND: A recent study suggested that the protective effect of familial longevity becomes negligible for centenarians. However, the authors assessed the dependence on familial longevity in centenarians by comparing centenarians with 1 parent surviving to age 80+ to centenarians whose same-sexed parent did not survive to age 80. Here we test whether the protective effect of familial longevity persists after age 100 using more restrictive definitions of long-lived families. METHODS: Long-lived sibships were identified through 3 nationwide, consecutive studies in Denmark, including families with either at least 2 siblings aged 90+ or a Family Longevity Selection Score (FLoSS) above 7. Long-lived siblings enrolled in these studies and who reached age 100 were included. For each sibling, 5 controls matched on sex and year of birth were randomly selected among centenarians in the Danish population. Survival time from age 100 was described with Kaplan-Meier curves for siblings and controls separately. Survival analyses were performed using stratified Cox proportional hazards models. RESULTS: A total of 340 individuals from long-lived sibships who survived to age 100 and 1 700 controls were included. Among the long-lived siblings and controls, 1 650 (81%) were women. The results showed that long-lived siblings presented better overall survival after age 100 than sporadic long-livers (hazard ratio [HR]  = 0.80, 95% confidence interval [CI]  = 0.71-0.91), with even lower estimate (HR = 0.65, 95% CI = 0.50-0.85) if familial longevity was defined by FLoSS. CONCLUSIONS: The present study, with virtually no loss to follow-up, demonstrated a persistence of protective effect of familial longevity after age 100.


Assuntos
Longevidade , Irmãos , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Centenários , Dinamarca/epidemiologia , Longevidade/genética , Pais , Sistema de Registros
17.
Res Sq ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014034

RESUMO

Biomarker identification is critical for precise disease diagnosis and understanding disease pathogenesis in omics data analysis, like using fold change and regression analysis. Graph neural networks (GNNs) have been the dominant deep learning model for analyzing graph-structured data. However, we found two major limitations of existing GNNs in omics data analysis, i.e., limited-prediction/diagnosis accuracy and limited-reproducible biomarker identification capacity across multiple datasets. The root of the challenges is the unique graph structure of biological signaling pathways, which consists of a large number of targets and intensive and complex signaling interactions among these targets. To resolve these two challenges, in this study, we presented a novel GNN model architecture, named PathFormer, which systematically integrate signaling network, priori knowledge and omics data to rank biomarkers and predict disease diagnosis. In the comparison results, PathFormer outperformed existing GNN models significantly in terms of highly accurate prediction capability (~30% accuracy improvement in disease diagnosis compared with existing GNN models) and high reproducibility of biomarker ranking across different datasets. The improvement was confirmed using two independent Alzheimer's Disease (AD) and cancer transcriptomic datasets. The PathFormer model can be directly applied to other omics data analysis studies.

18.
Nat Genet ; 55(10): 1640-1650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estudo de Associação Genômica Ampla , Cirrose Hepática/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Fosfolipases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
19.
Aging (Albany NY) ; 15(9): 3249-3272, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37074818

RESUMO

Associations of single nucleotide polymorphisms (SNPs) of the MLXIPL lipid gene with Alzheimer's (AD) and coronary heart disease (CHD) and potentially causal mediation effects of their risk factors, high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG), were examined in two samples of European ancestry from the US (22,712 individuals 587/2,608 AD/CHD cases) and the UK Biobank (UKB) (232,341 individuals; 809/15,269 AD/CHD cases). Our results suggest that these associations can be regulated by several biological mechanisms and shaped by exogenous exposures. Two patterns of associations (represented by rs17145750 and rs6967028) were identified. Minor alleles of rs17145750 and rs6967028 demonstrated primary (secondary) association with high TG (lower HDL-C) and high HDL-C (lower TG) levels, respectively. The primary association explained ~50% of the secondary one suggesting partly independent mechanisms of TG and HDL-C regulation. The magnitude of the association of rs17145750 with HDL-C was significantly higher in the US vs. UKB sample and likely related to differences in exogenous exposures in the two countries. rs17145750 demonstrated a significant detrimental indirect effect through TG on AD risk in the UKB only (ßIE = 0.015, pIE = 1.9 × 10-3), which suggests protective effects of high TG levels against AD, likely shaped by exogenous exposures. Also, rs17145750 demonstrated significant protective indirect effects through TG and HDL-C in the associations with CHD in both samples. In contrast, rs6967028 demonstrated an adverse mediation effect through HDL-C on CHD risk in the US sample only (ßIE = 0.019, pIE = 8.6 × 10-4). This trade-off suggests different roles of triglyceride mediated mechanisms in the pathogenesis of AD and CHD.


Assuntos
Doença de Alzheimer , Doença das Coronárias , Humanos , Predisposição Genética para Doença , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Triglicerídeos , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Fatores de Risco , HDL-Colesterol
20.
medRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234834

RESUMO

Patients with chronic kidney disease (CKD) have increased oxidative stress and chronic inflammation, which may escalate the production of advanced glycation end-products (AGE). High soluble receptor for AGE (sRAGE) and low estimated glomerular filtration rate (eGFR) levels are associated with CKD and aging. We evaluated whether eGFR calculated from creatinine and cystatin C share pleiotropic genetic factors with sRAGE. We employed whole-genome sequencing and correlated meta-analyses on combined genomewide association study (GWAS) p -values in 4,182 individuals (age range: 24-110) from the Long Life Family Study (LLFS). We also conducted transcriptome-wide association studies (TWAS) on whole blood in a subset of 1,209 individuals. We identified 59 pleiotropic GWAS loci ( p <5×10 -8 ) and 17 TWAS genes (Bonferroni- p <2.73×10 -6 ) for eGFR traits and sRAGE. TWAS genes, LSP1 and MIR23AHG , were associated with eGFR and sRAGE located within GWAS loci, lncRNA- KCNQ1OT1 and CACNA1A/CCDC130 , respectively. GWAS variants were eQTLs in the kidney glomeruli and tubules, and GWAS genes predicted kidney carcinoma. TWAS genes harbored eQTLs in the kidney, predicted kidney carcinoma, and connected enhancer-promoter variants with kidney function-related phenotypes at p <5×10 -8 . Additionally, higher allele frequencies of protective variants for eGFR traits were detected in LLFS than in ALFA-Europeans and TOPMed, suggesting better kidney function in healthy-aging LLFS than in general populations. Integrating genomic annotation and transcriptional gene activity revealed the enrichment of genetic elements in kidney function and kidney diseases. The identified pleiotropic loci and gene expressions for eGFR and sRAGE suggest their underlying shared genetic effects and highlight their roles in kidney- and aging-related signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA