Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240111

RESUMO

Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 µM to 2.78 µM for dimers and 8.56 µM to 10.12 µM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , SARS-CoV-2 , Peptidomiméticos/farmacologia , Sítios de Ligação , Enzima de Conversão de Angiotensina 2/química , Polimixinas , Pandemias , Ligação Proteica
2.
Sci Adv ; 9(9): eadf0797, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867692

RESUMO

During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, ß, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/ß/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.


Assuntos
Proteínas de Ligação ao Cálcio , Ribossomos , Canais de Translocação SEC , Microscopia Crioeletrônica
3.
Antiviral Res ; 213: 105587, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36977434

RESUMO

Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of coronaviruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 µM). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 µM), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Impedância Elétrica , Células HEK293 , Glicoproteína da Espícula de Coronavírus/química , Fusão de Membrana , Antivirais/farmacologia , Antivirais/química , Antirretrovirais/farmacologia
4.
Front Cell Infect Microbiol ; 12: 989534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111239

RESUMO

Urtica dioica agglutinin (UDA) is a carbohydrate-binding small monomeric protein isolated from stinging nettle rhizomes. It inhibits replication of a broad range of viruses, including coronaviruses, in multiple cell types, with appealing selectivity. In this work, we investigated the potential of UDA as a broad-spectrum antiviral agent against SARS-CoV-2. UDA potently blocks transduction of pseudotyped SARS-CoV-2 in A549.ACE2+-TMPRSS2 cells, with IC50 values ranging from 0.32 to 1.22 µM. Furthermore, UDA prevents viral replication of the early Wuhan-Hu-1 strain in Vero E6 cells (IC50 = 225 nM), but also the replication of SARS-CoV-2 variants of concern, including Alpha, Beta and Gamma (IC50 ranging from 115 to 171 nM). In addition, UDA exerts antiviral activity against the latest circulating Delta and Omicron variant in U87.ACE2+ cells (IC50 values are 1.6 and 0.9 µM, respectively). Importantly, when tested in Air-Liquid Interface (ALI) primary lung epithelial cell cultures, UDA preserves antiviral activity against SARS-CoV-2 (20A.EU2 variant) in the nanomolar range. Surface plasmon resonance (SPR) studies demonstrated a concentration-dependent binding of UDA to the viral spike protein of SARS-CoV-2, suggesting interference of UDA with cell attachment or subsequent virus entry. Moreover, in additional mechanistic studies with cell-cell fusion assays, UDA inhibited SARS-CoV-2 spike protein-mediated membrane fusion. Finally, pseudotyped SARS-CoV-2 mutants with N-glycosylation deletions in the S2 subunit of the spike protein remained sensitive to the antiviral activity of UDA. In conclusion, our data establish UDA as a potent fusion inhibitor for the current variants of SARS-CoV-2.


Assuntos
COVID-19 , Urtica dioica , Enzima de Conversão de Angiotensina 2 , Antirretrovirais , Antivirais/farmacologia , Carboidratos , Európio , Humanos , Receptores de Superfície Celular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Urtica dioica/metabolismo , Proteínas Virais
5.
Antiviral Res ; 203: 105342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595082

RESUMO

Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the additional need to develop effective antiviral countermeasures. In the context of early preclinical studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2+, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87.ACE2+ cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2+ cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2+ cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2+ cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC50 values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2+ cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms.


Assuntos
Tratamento Farmacológico da COVID-19 , Glioblastoma , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Vacinas contra COVID-19 , Linhagem Celular , Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Biotechniques ; 72(6): 245-254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445605

RESUMO

Basic and antiviral research on SARS-CoV-2 rely on cellular assays of virus replication in vitro. In addition, accurate detection of virus-infected cells and released virus particles is needed to study virus replication and to profile new candidate antiviral drugs. Here, by flow cytometry, we detect SARS-CoV-2 infection at single cell level and distinguish infected Vero E6 cells from uninfected bystander cells. Furthermore, based on the viral nucleocapsid expression, subpopulations of infected cells that are in an early or late phase of viral replication can be differentiated. Importantly, this flow cytometric technique complements our duplex RT-qPCR detection of viral E and N, and it can be applied to all current SARS-CoV-2 variants of concern, including the highly mutated Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , Chlorocebus aethiops , Citometria de Fluxo , Humanos , SARS-CoV-2/genética , Células Vero
7.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054769

RESUMO

One of the reported substrates for the endoplasmic reticulum (ER) translocation inhibitor cyclotriazadisulfonamide (CADA) is DNAJC3, a chaperone of the unfolded protein response during ER stress. In this study, we investigated the impact of altered DNAJC3 protein levels on the inhibitory activity of CADA. By comparing WT DNAJC3 with a CADA-resistant DNAJC3 mutant, we observed the enhanced sensitivity of human CD4, PTK7 and ERLEC1 for CADA when DNAJC3 was expressed at high levels. Combined treatment of CADA with a proteasome inhibitor resulted in synergistic inhibition of protein translocation and in the rescue of a small preprotein fraction, which presumably corresponds to the CADA affected protein fraction that is stalled at the Sec61 translocon. We demonstrate that DNAJC3 enhances the protein translation of a reporter protein that is expressed downstream of the CADA-stalled substrate, suggesting that DNAJC3 promotes the clearance of the clogged translocon. We propose a model in which a reduced DNAJC3 level by CADA slows down the clearance of CADA-stalled substrates. This results in higher residual translocation into the ER lumen due to the longer dwelling time of the temporarily stalled substrates in the translocon. Thus, by directly reducing DNAJC3 protein levels, CADA attenuates its net down-modulating effect on its substrates.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Transporte Proteico , Canais de Translocação SEC/metabolismo , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Resposta a Proteínas não Dobradas
8.
Mol Cell Proteomics ; 20: 100144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34481949

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits the cotranslational translocation of type I integral membrane protein human CD4 (huCD4) across the endoplasmic reticulum in a signal peptide (SP)-dependent way. Previously, sortilin was identified as a secondary substrate for CADA but showed reduced CADA sensitivity as compared with huCD4. Here, we performed a quantitative proteomic study on the crude membrane fraction of human T-cells to analyze how many proteins are sensitive to CADA. To screen for these proteins, we employed stable isotope labeling by amino acids in cell culture technique in combination with quantitative MS on CADA-treated human T-lymphoid SUP-T1 cells expressing high levels of huCD4. In line with our previous reports, our current proteomic analysis (data available via ProteomeXchange with identifier PXD027712) demonstrated that only a very small subset of proteins is depleted by CADA. Our data also confirmed that cellular expression of both huCD4 and sortilin are affected by CADA treatment of SUP-T1 cells. Furthermore, three additional targets for CADA are identified, namely, endoplasmic reticulum lectin 1 (ERLEC1), inactive tyrosine-protein kinase 7 (PTK7), and DnaJ homolog subfamily C member 3 (DNAJC3). Western blot and flow cytometry analysis of ERLEC1, PTK7, and DNAJC3 protein expression validated susceptibility of these substrates to CADA, although with varying degrees of sensitivity. Additional cell-free in vitro translation/translocation data demonstrated that the new substrates for CADA carry cleavable SPs that are targets for the cotranslational translocation inhibition exerted by CADA. Thus, our quantitative proteomic analysis demonstrates that ERLEC1, PTK7, and DNAJC3 are validated additional substrates of CADA; however, huCD4 remains the most sensitive integral membrane protein for the endoplasmic reticulum translocation inhibitor CADA. Furthermore, to our knowledge, CADA is the first compound that specifically interferes with only a very small subset of SPs and does not affect signal anchor sequences.


Assuntos
Proteínas de Membrana/metabolismo , Sulfonamidas/farmacologia , Linfócitos T/metabolismo , Linhagem Celular , Retículo Endoplasmático , Humanos , Marcação por Isótopo , Proteômica , Especificidade por Substrato
9.
Front Immunol ; 12: 650731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968048

RESUMO

The small molecule cyclotriazadisulfonamide (CADA) down-modulates the human CD4 receptor, an important factor in T cell activation. Here, we addressed the immunosuppressive potential of CADA using different activation models. CADA inhibited lymphocyte proliferation with low cellular toxicity in a mixed lymphocyte reaction, and when human PBMCs were stimulated with CD3/CD28 beads, phytohemagglutinin or anti-CD3 antibodies. The immunosuppressive effect of CADA involved both CD4+ and CD8+ T cells but was, surprisingly, most prominent in the CD8+ T cell subpopulation where it inhibited cell-mediated lympholysis. Immunosuppression by CADA was characterized by suppressed secretion of various cytokines, and reduced CD25, phosphoSTAT5 and CTPS-1 levels. We discovered a direct down-modulatory effect of CADA on 4-1BB (CD137) expression, a survival factor for activated CD8+ T cells. More specifically, CADA blocked 4­1BB protein biosynthesis by inhibition of its co-translational translocation into the ER in a signal peptide-dependent way. Taken together, this study demonstrates that CADA, as potent down-modulator of human CD4 and 4­1BB receptor, has promising immunomodulatory characteristics. This would open up new avenues toward chemotherapeutics that act as selective protein down-modulators to treat various human immunological disorders.


Assuntos
Antígenos CD4/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Regulação para Cima/efeitos dos fármacos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Células Jurkat , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Transporte Proteico/efeitos dos fármacos , Fator de Transcrição STAT5/imunologia , Fator de Transcrição STAT5/metabolismo , Bibliotecas de Moléculas Pequenas/química , Sulfonamidas/química
10.
Traffic ; 21(2): 250-264, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675144

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits the co-translational translocation of human CD4 (huCD4) into the endoplasmic reticulum lumen in a signal peptide (SP)-dependent way. We propose that CADA binds the nascent huCD4 SP in a folded conformation within the translocon resembling a normally transitory state during translocation. Here, we used alanine scanning on the huCD4 SP to identify the signature for full susceptibility to CADA. In accordance with our previous work, we demonstrate that residues in the vicinity of the hydrophobic h-region are critical for sensitivity to CADA. In particular, exchanging Gln-15, Val-17 or Pro-20 in the huCD4 SP for Ala resulted in a resistant phenotype. Together with positively charged residues at the N-terminal portion of the mature protein, these residues mediate full susceptibility to the co-translational translocation inhibitory activity of CADA towards huCD4. In addition, sensitivity to CADA is inversely related to hydrophobicity in the huCD4 SP. In vitro translocation experiments confirmed that the general hydrophobicity of the h-domain and positive charges in the mature protein are key elements that affect both the translocation efficiency of huCD4 and the sensitivity towards CADA. Besides these two general SP parameters that determine the functionality of the signal sequence, unique amino acid pairs (L14/Q15 and L19/P20) in the SP hydrophobic core add specificity to the sensitivity signature for a co-translational translocation inhibitor.


Assuntos
Antígenos CD4 , Sinais Direcionadores de Proteínas , Inibidores da Síntese de Proteínas , Antígenos CD4/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sinais Direcionadores de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
11.
PLoS One ; 13(12): e0208641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30543669

RESUMO

The SRP-Sec61 targeting/translocation pathway of eukaryotic cells targets nascent protein chains to the membrane of the endoplasmic reticulum. Using this machinery, secretory proteins are translocated across this membrane whereas membrane proteins are integrated into the lipid bilayer. One of the key players of the pathway is the protein-conducting Sec61 (translocon) complex of the endoplasmic reticulum. The Sec61 complex has no enzymatic activity, is expressed only intracellularly and is difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its functions is thus notoriously difficult. Such inhibitors may not only be valuable tools for cell biology, they may also represent novel anti-tumor drugs. Here we have developed a two-step, sequential screening assay for inhibitors of the whole SRP-Sec61 targeting/translocation pathway which might include molecules affecting Sec61 complex functions. The resulting hit compounds were analyzed using a whole cell biosynthesis assay and a cell free transcription/translation/translocation assay. Using this methodology, we identified novel compounds inhibiting this pathway. Following structure-based back screening, one of these substances was analyzed in more detail and we could show that it indeed impairs translocation at the level of the Sec61 complex. A slightly modified methodology may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex in order to derive novel antibiotic drugs.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Canais de Translocação SEC/metabolismo , Sistema Livre de Células , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Pirazóis/química , Pirazóis/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Canais de Translocação SEC/antagonistas & inibidores , Canais de Translocação SEC/genética
12.
Anal Biochem ; 484: 102-4, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26050631

RESUMO

Here, we demonstrate that pancreatic microsomal membranes from pigs, sheep, or cattle destined for human consumption can be used as a valuable and ethically correct alternative to dog microsomes for cell-free protein translocation. By adding adequate ribonuclease (RNase) inhibitors to the membrane fraction, successful in vitro co-translational translocation of wild-type and chimeric pre-prolactin into the lumen of rough microsomes was obtained. In addition, the human type I integral membrane proteins CD4 and VCAM-1 were efficiently glycosylated in RNase-treated microsomes. Thus, RNase-neutralized pancreatic membrane fractions from pig, cow, or sheep are a cheap, easily accessible, and fulfilling alternative to canine microsomes.


Assuntos
Inibidores Enzimáticos/farmacologia , Membranas Intracelulares/metabolismo , Pâncreas/citologia , Ribonucleases/antagonistas & inibidores , Ovinos , Suínos , Animais , Bovinos , Cães , Glicosilação/efeitos dos fármacos , Humanos , Membranas Intracelulares/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA