Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L41-L62, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33050709

RESUMO

In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.


Assuntos
Lesão Pulmonar Aguda/patologia , Amônia/toxicidade , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA
2.
PLoS Genet ; 15(11): e1008467, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730647

RESUMO

The primary cilium is a signaling center critical for proper embryonic development. Previous studies have demonstrated that mice lacking Ttc21b have impaired retrograde trafficking within the cilium and multiple organogenesis phenotypes, including microcephaly. Interestingly, the severity of the microcephaly in Ttc21baln/aln homozygous null mutants is considerably affected by the genetic background and mutants on an FVB/NJ (FVB) background develop a forebrain significantly smaller than mutants on a C57BL/6J (B6) background. We performed a Quantitative Trait Locus (QTL) analysis to identify potential genetic modifiers and identified two regions linked to differential forebrain size: modifier of alien QTL1 (Moaq1) on chromosome 4 at 27.8 Mb and Moaq2 on chromosome 6 at 93.6 Mb. These QTLs were validated by constructing congenic strains. Further analysis of Moaq1 identified an orphan G-protein coupled receptor (GPCR), Gpr63, as a candidate gene. We identified a SNP that is polymorphic between the FVB and B6 strains in Gpr63 and creates a missense mutation predicted to be deleterious in the FVB protein. We used CRISPR-Cas9 genome editing to create two lines of FVB congenic mice: one with the B6 sequence of Gpr63 and the other with a deletion allele leading to a truncation of the GPR63 C-terminal tail. We then demonstrated that Gpr63 can localize to the cilium in vitro. These alleles affect ciliary localization of GPR63 in vitro and genetically interact with Ttc21baln/aln as Gpr63;Ttc21b double mutants show unique phenotypes including spina bifida aperta and earlier embryonic lethality. This validated Gpr63 as a modifier of multiple Ttc21b neural phenotypes and strongly supports Gpr63 as a causal gene (i.e., a quantitative trait gene, QTG) within the Moaq1 QTL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Desenvolvimento Embrionário/genética , Microcefalia/genética , Locos de Características Quantitativas/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animais , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico , Cílios/genética , Embrião de Mamíferos , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microcefalia/fisiopatologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Espinha Bífida Cística/genética , Espinha Bífida Cística/fisiopatologia , Mutações Sintéticas Letais/genética
3.
BMC Genomics ; 20(1): 727, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601172

RESUMO

BACKGROUND: Heart disease (HD) is the major cause of morbidity and mortality in patients with hypereosinophilic diseases. Due to a lack of adequate animal models, our understanding of the pathophysiology of eosinophil-mediated diseases with heart complications is limited. We have discovered a mouse mutant, now maintained on an A/J inbred background, that spontaneously develops hypereosinophilia in multiple organs. Cellular infiltration into the heart causes an eosinophilic myocarditis, with affected mice of the mutant line (i.e., A/JHD) demonstrating extensive myocardial damage and remodeling that leads to HD and premature death, usually by 15-weeks old. RESULTS: Maintaining the A/JHD line for many generations established that the HD trait was heritable and implied the mode of inheritance was not too complex. Backcross and intercross populations generated from mating A/JHD males with females from four different inbred strains produced recombinant populations with highly variable rates of affected offspring, ranging from none in C57BL/6 J intercrosses, to a few mice with HD using 129S1/SvImJ intercrosses and C57BL/6 J backcrosses, but nearly 8% of intercrosses and > 17% of backcrosses from SJL/J related populations developed HD. Linkage analyses of these SJL/J derived recombinants identified three highly significant loci: a recessive locus mapping to distal chromosome 5 (LOD = 4.88; named Emhd1 for eosinophilic myocarditis to heart disease-1); and two dominant variants mapping to chromosome 17, one (Emhd2; LOD = 7.51) proximal to the major histocompatibility complex, and a second (Emhd3; LOD = 6.89) that includes the major histocompatibility region. Haplotype analysis identified the specific crossovers that defined the Emhd1 (2.65 Mb), Emhd2 (8.46 Mb) and Emhd3 (14.59 Mb) intervals. CONCLUSIONS: These results indicate the HD trait in this mutant mouse model of eosinophilic myocarditis is oligogenic with variable penetrance, due to multiple segregating variants and possibly additional genetic or nongenetic factors. The A/JHD mouse model represents a unique and valuable resource to understand the interplay of causal factors that underlie the pathology of this newly discovered eosinophil-associated disease with cardiac complications.


Assuntos
Mapeamento Cromossômico/métodos , Eosinofilia/genética , Mutação , Miocardite/genética , Animais , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Eosinofilia/mortalidade , Feminino , Ligação Genética , Loci Gênicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Miocardite/mortalidade , Penetrância
4.
Am J Physiol Heart Circ Physiol ; 317(2): H405-H414, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199184

RESUMO

Hypereosinophilic syndrome is characterized by sustained and marked eosinophilia leading to tissue damage and organ dysfunction. Morbidity and mortality occur primarily due to cardiac and thromboembolic complications. Understanding the cause and mechanism of disease would aid in the development of targeted therapies with greater efficacy and fewer side effects. We discovered a spontaneous mouse mutant in our colony with a hypereosinophilic phenotype. Mice develop peripheral blood eosinophilia; infiltration of lungs, spleen, and heart by eosinophils; and extensive myocardial damage and remodeling. This ultimately leads to heart failure and premature death. Histopathological assessment of the hearts revealed a robust inflammatory infiltrate composed primarily of eosinophils and B-lymphocytes, associated with myocardial damage and replacement fibrosis, consistent with eosinophilic myocarditis. In many cases, hearts showed dilatation and thinning of the right ventricular wall, suggestive of an inflammatory dilated cardiomyopathy. Most mice showed atrial thrombi, which often filled the chamber. Protein expression analysis revealed overexpression of chemokines and cytokines involved in innate and adaptive immunity including IL-4, eotaxin, and RANTES. Disease could be transferred to wild-type mice by adoptive transfer of splenocytes from affected mice, suggesting a role for the immune system. In summary, the pathologies observed in the mutant lines are reminiscent of those seen in patients with hypereosinophilia, where cardiac-related morbidities, like congestive heart failure and thrombi, are the most common causes of death. As such, our model provides an opportunity to test mechanistic hypotheses and develop targeted therapies.NEW & NOTEWORTHY This article describes a new model of heart disease in hypereosinophilia. The model developed as a spontaneous mouse mutant in the colony and is characterized by peripheral blood eosinophilia and infiltration of lungs, spleen, and heart by eosinophils. In the heart, there is extensive myocardial damage, remodeling, fibrosis, and thrombosis, leading to heart failure and death. The immune microenvironment is one of increased innate and adaptive immunity, including Th1 and Th2 cytokines/chemokines. Finally, adoptive transfer of splenocytes transfers disease to recipient mice. In summary, this model provides an opportunity to test mechanistic hypotheses and develop targeted therapies for this rare but devastating disease.


Assuntos
Cardiomiopatia Dilatada/etiologia , Insuficiência Cardíaca/etiologia , Síndrome Hipereosinofílica/complicações , Miocardite/etiologia , Miocárdio , Imunidade Adaptativa , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Eosinófilos/imunologia , Eosinófilos/metabolismo , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Síndrome Hipereosinofílica/imunologia , Síndrome Hipereosinofílica/metabolismo , Síndrome Hipereosinofílica/patologia , Imunidade Inata , Camundongos Mutantes , Miocardite/imunologia , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Transdução de Sinais , Fatores de Tempo , Remodelação Ventricular
5.
Toxicol Appl Pharmacol ; 327: 59-70, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433707

RESUMO

The risk of human exposure to fiber nanoparticles has risen in recent years due to increases in the manufacture and utilization of carbon nanotubes (CNTs). CNTs are present as airborne particulates in occupational settings and their hazard potential has been demonstrated in experimental lung exposure studies using inbred mouse strains. However, it is not known whether different inbred strains differ in lung responses to CNTs by virtue of their genetics. In this work, common inbred strains (BALB/c, C57Bl/6, DBA/2, and C3H/He) were exposed to CNTs via oropharyngeal aspiration and lung histology and bronchoalveolar lavage (BAL) samples were evaluated over 28days with the objective of evaluating sensitivity/resistance among strains. C57Bl/6 mice developed significantly more extensive type II pneumocyte (T2P) hyperplasia and alveolar infiltrate compared to DBA/2 mice, which were resistant. Surprisingly, DBA/2 but not C57Bl/6 mice were extremely sensitive to increases in leukocytes recovered in BAL fluid. Underlying global gene expression patterns in the two strains were compared using mRNA sequencing to investigate regulatory networks associated with the different effects. The impact of exposure on gene networks regulating various aspects of immune response and cell survival was limited in DBA/2 mice compared to C57Bl/6. Investigation of B6D2F1 (C57Bl/6×DBA/2 hybrid) mice demonstrated inheritance of sensitivity to CNT exposures in regard to toxicologic lung pathology and BAL leukocyte accumulations. These findings demonstrate a genetic basis of susceptibility to CNT particle exposures and both inform the use of inbred mouse models and suggest the likelihood of differences in genetic susceptibility among humans.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Predisposição Genética para Doença , Pneumopatias/induzido quimicamente , Pneumopatias/genética , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Contagem de Leucócitos , Pulmão/patologia , Pneumopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Alvéolos Pulmonares/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Especificidade da Espécie
6.
Cell Rep ; 13(11): 2412-2424, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26686632

RESUMO

Whether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis. Both young and aged HSPCs show impaired activation of the DNA-damage-induced G1-S checkpoint. Induction of chronic DNA double-strand breaks by zinc-finger nucleases suggests that HSPCs undergo apoptosis rather than faulty repair. These data reveal a protective mechanism in both the young and aged hematopoietic system against accumulation of mutations in response to DNA damage.


Assuntos
Envelhecimento , Genoma , Células-Tronco Hematopoéticas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/efeitos da radiação , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Células Cultivadas , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos da radiação , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Raios gama , Células-Tronco Hematopoéticas/citologia , Perda de Heterozigosidade , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Pontos de Checagem da Fase S do Ciclo Celular/efeitos da radiação , Transplante Homólogo , Irradiação Corporal Total
7.
PLoS One ; 10(6): e0130936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103466

RESUMO

Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35-45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6-12 week X1 control strain. Sorting mice into distinct age groups revealed that 'age at exposure' inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3-4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI development and progression and identify intermediary injury biomarkers that can predict outcome.


Assuntos
Lesão Pulmonar Aguda/mortalidade , Fatores Etários , Hiperóxia/complicações , Fatores Sexuais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Animais , Animais Congênicos , Feminino , Genótipo , Endogamia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas , Sobrevida
8.
Am J Respir Cell Mol Biol ; 49(3): 368-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590305

RESUMO

In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor ß1 signaling, which previously has been associated with the susceptibility to ALI in mice.


Assuntos
Lesão Pulmonar Aguda/genética , Substâncias para a Guerra Química/toxicidade , Expressão Gênica/efeitos dos fármacos , Genoma , Pulmão/metabolismo , Fosgênio/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Alelos , Animais , Mapeamento Cromossômico , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Integrinas/genética , Integrinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteína Reelina , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
J Appl Genet ; 54(1): 79-88, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23132376

RESUMO

A number of imprinted genes have been observed in plants, animals and humans. They not only control growth and developmental traits, but may also be responsible for survival traits. Based on the Cox proportional hazards (PH) model, we constructed a general parametric model for dissecting genomic imprinting, in which a baseline hazard function is selectable for fitting the effects of imprinted quantitative trait loci (iQTL) genotypes on the survival curve. The expectation-maximisation (EM) algorithm is derived for solving the maximum likelihood estimates of iQTL parameters. The imprinting patterns of the detected iQTL are statistically tested under a series of null hypotheses. The Bayesian information criterion (BIC) model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameterisation. We applied the proposed approach to analyse the published data in an F(2) population of mice and concluded that, among five commonly used survival distributions, the log-logistic distribution is the optimal baseline hazard function for the survival time of hyperoxic acute lung injury (HALI). Under this optimal model, five QTL were detected, among which four are imprinted in different imprinting patterns.


Assuntos
Impressão Genômica/genética , Modelos Genéticos , Locos de Características Quantitativas , Algoritmos , Animais , Mapeamento Cromossômico , Genótipo , Humanos , Funções Verossimilhança , Camundongos , Modelos Estatísticos , Fenótipo , Modelos de Riscos Proporcionais , Análise de Sobrevida
10.
PLoS One ; 7(5): e38177, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666475

RESUMO

Increased oxygen (O(2)) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F(2) populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci.


Assuntos
Lesão Pulmonar Aguda/genética , Alelos , Epistasia Genética/genética , Locos de Características Quantitativas/genética , Lesão Pulmonar Aguda/imunologia , Animais , Animais Congênicos , Resistência à Doença/genética , Feminino , Masculino , Camundongos , Análise de Sobrevida
11.
Am J Respir Cell Mol Biol ; 47(2): 234-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22447970

RESUMO

The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Cloro/farmacologia , Animais , Mapeamento Cromossômico/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Haplótipos , Fator 4 Semelhante a Kruppel , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma/genética
12.
Brief Bioinform ; 13(1): 34-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21565936

RESUMO

Genetic imprinting, by which the expression of a gene depends on the parental origin of its alleles, may be subjected to reprogramming through each generation. Currently, such reprogramming is limited to qualitative description only, lacking more precise quantitative estimation for its extent, pattern and mechanism. Here, we present a computational framework for analyzing the magnitude of genetic imprinting and its transgenerational inheritance mode. This quantitative model is based on the breeding scheme of reciprocal backcrosses between reciprocal F(1) hybrids and original inbred parents, in which the transmission of genetic imprinting across generations can be tracked. We define a series of quantitative genetic parameters that describe the extent and transmission mode of genetic imprinting and further estimate and test these parameters within a genetic mapping framework using a new powerful computational algorithm. The model and algorithm described will enable geneticists to identify and map imprinted quantitative trait loci and dictate a comprehensive atlas of developmental and epigenetic mechanisms related to genetic imprinting. We illustrate the new discovery of the role of genetic imprinting in regulating hyperoxic acute lung injury survival time using a mouse reciprocal backcross design.


Assuntos
Simulação por Computador , Impressão Genômica , Padrões de Herança , Animais , Cruzamento , Cruzamentos Genéticos , Epigênese Genética , Genótipo , Camundongos , Locos de Características Quantitativas
13.
Mol Genet Genomics ; 287(1): 67-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22143178

RESUMO

Genomic imprinting, a genetic phenomenon of non-equivalent allele expression that depends on parental origins, has been ubiquitously observed in nature. It does not only control the traits of growth and development but also may be responsible for survival traits. Based on the accelerated failure time model, we construct a general parametric model for mapping the imprinted QTL (iQTL). Within the framework of interval mapping, maximum likelihood estimation of iQTL parameters is implemented via EM algorithm. The imprinting patterns of the detected iQTL are statistically tested according to a series of null hypotheses. BIC model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameters. Simulations are used to validate the proposed mapping procedure. A published dataset from a mouse model system was used to illustrate the proposed framework. Results show that among the five commonly used survival distributions, Log-logistic distribution is the optimal baseline hazard function for mapping QTL of hyperoxic acute lung injury (HALI) survival; under the log-logistic distribution, four QTLs were identified, in which only one QTL was inherited in Mendelian fashion, whereas others were imprinted in different imprinting patterns.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Impressão Genômica/genética , Modelos Genéticos , Locos de Características Quantitativas/genética , Lesão Pulmonar Aguda/genética , Animais , Simulação por Computador , Funções Verossimilhança , Modelos Logísticos , Camundongos , Análise de Sobrevida , Fatores de Tempo
14.
Infect Immun ; 79(8): 3204-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628518

RESUMO

Mechanisms underlying susceptibility to anthrax infection are unknown. Using a phylogenetically diverse panel of inbred mice and spores of Bacillus anthracis Ames, we investigated host susceptibility to pulmonary anthrax. Susceptibility profiles for survival time and organ pathogen load differed across strains, indicating distinct genetic controls. Tissue infection kinetics analysis showed greater systemic dissemination in susceptible DBA/2J (D) mice but a higher terminal bacterial load in resistant BALB/cJ (C) mice. Interestingly, the most resistant strains, C and C57BL/6J (B), demonstrated a sex bias for susceptibility. For example, BALB/cJ females had a significantly higher survival time and required 4-fold more spores for 100% mortality compared to BALB/cJ males. To identify genetic regions associated with differential susceptibility, survival time and extent of organ infection were assessed using mice derived from two susceptibility models: (i) BXD advanced recombinant inbred strains and (ii) F2 offspring generated from polar responding C and D strains. Genome-wide analysis of BXD strain survival identified linkage on chromosomes 5, 6, 9, 11, and 14. Quantitative trait locus (QTL) analysis of the C×DF2 population revealed a significant QTL (designated Rpai1 for resistance to pulmonary anthrax infection, locus 1) for survival time on chromosome 17 and also identified a chromosome 11 locus for lung pathogen burden. The striking difference between genome-wide linkage profiles for these two mouse models of anthrax susceptibility supports our hypothesis that these are multigenic traits. Our data provide the first evidence for a differential sex response to anthrax resistance and further highlight the unlikelihood of a single common genetic contribution for this response across strains.


Assuntos
Antraz/genética , Antraz/imunologia , Bacillus anthracis/patogenicidade , Predisposição Genética para Doença , Pneumopatias/genética , Esporos Bacterianos/patogenicidade , Animais , Antraz/patologia , Bacillus anthracis/imunologia , Modelos Animais de Doenças , Feminino , Pneumopatias/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Preconceito , Locos de Características Quantitativas , Doenças dos Roedores/genética , Doenças dos Roedores/imunologia , Doenças dos Roedores/patologia , Esporos Bacterianos/imunologia , Análise de Sobrevida
15.
Am J Respir Crit Care Med ; 183(11): 1499-509, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21297076

RESUMO

RATIONALE: Because acute lung injury is a sporadic disease produced by heterogeneous precipitating factors, previous genetic analyses are mainly limited to candidate gene case-control studies. OBJECTIVES: To develop a genome-wide strategy in which single nucleotide polymorphism associations are assessed for functional consequences to survival during acute lung injury in mice. METHODS: To identify genes associated with acute lung injury, 40 inbred strains were exposed to acrolein and haplotype association mapping, microarray, and DNA-protein binding were assessed. MEASUREMENTS AND MAIN RESULTS: The mean survival time varied among mouse strains with polar strains differing approximately 2.5-fold. Associations were identified on chromosomes 1, 2, 4, 11, and 12. Seven genes (Acvr1, Cacnb4, Ccdc148, Galnt13, Rfwd2, Rpap2, and Tgfbr3) had single nucleotide polymorphism (SNP) associations within the gene. Because SNP associations may encompass "blocks" of associated variants, functional assessment was performed in 91 genes within ± 1 Mbp of each SNP association. Using 10% or greater allelic frequency and 10% or greater phenotype explained as threshold criteria, 16 genes were assessed by microarray and reverse real-time polymerase chain reaction. Microarray revealed several enriched pathways including transforming growth factor-ß signaling. Transcripts for Acvr1, Arhgap15, Cacybp, Rfwd2, and Tgfbr3 differed between the strains with exposure and contained SNPs that could eliminate putative transcriptional factor recognition sites. Ccdc148, Fancl, and Tnn had sequence differences that could produce an amino acid substitution. Mycn and Mgat4a had a promoter SNP or 3'untranslated region SNPs, respectively. Several genes were related and encoded receptors (ACVR1, TGFBR3), transcription factors (MYCN, possibly CCDC148), and ubiquitin-proteasome (RFWD2, FANCL, CACYBP) proteins that can modulate cell signaling. An Acvr1 SNP eliminated a putative ELK1 binding site and diminished DNA-protein binding. CONCLUSIONS: Assessment of genetic associations can be strengthened using a genetic/genomic approach. This approach identified several candidate genes, including Acvr1, associated with increased susceptibility to acute lung injury in mice.


Assuntos
Receptores de Ativinas Tipo I/genética , Lesão Pulmonar Aguda/genética , Haplótipos/genética , Acroleína , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos A , Polimorfismo de Nucleotídeo Único/genética , Análise Serial de Proteínas
16.
Genomics ; 97(6): 379-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21316444

RESUMO

As the two most popular models in survival analysis, the accelerated failure time (AFT) model can more easily fit survival data than the Cox proportional hazards model (PHM). In this study, we develop a general parametric AFT model for identifying survival trait loci, in which the flexible generalized F distribution, including many commonly used distributions as special cases, is specified as the baseline survival distribution. EM algorithm for maximum likelihood estimation of model parameters is given. Simulations are conducted to validate the flexibility and the utility of the proposed mapping procedure. In analyzing survival time following hyperoxic acute lung injury (HALI) of mice in an F(2) mating population, the generalized F distribution performed best among the six competing survival distributions and detected four QTLs controlling differential HALI survival.


Assuntos
Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Análise de Sobrevida , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/mortalidade , Algoritmos , Animais , Teorema de Bayes , Simulação por Computador , Marcadores Genéticos , Funções Verossimilhança , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos
17.
Theor Appl Genet ; 122(5): 855-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21107519

RESUMO

Most existing statistical methods for mapping quantitative trait loci (QTL) are not suitable for analyzing survival traits with a skewed distribution and censoring mechanism. As a result, researchers incorporate parametric and semi-parametric models of survival analysis into the framework of the interval mapping for QTL controlling survival traits. In survival analysis, accelerated failure time (AFT) model is considered as a de facto standard and fundamental model for data analysis. Based on AFT model, we propose a parametric approach for mapping survival traits using the EM algorithm to obtain the maximum likelihood estimates of the parameters. Also, with Bayesian information criterion (BIC) as a model selection criterion, an optimal mapping model is constructed by choosing specific error distributions with maximum likelihood and parsimonious parameters. Two real datasets were analyzed by our proposed method for illustration. The results show that among the five commonly used survival distributions, Weibull distribution is the optimal survival function for mapping of heading time in rice, while Log-logistic distribution is the optimal one for hyperoxic acute lung injury.


Assuntos
Mapeamento Cromossômico , Modelos Genéticos , Modelos Estatísticos , Locos de Características Quantitativas , Lesão Pulmonar Aguda/genética , Algoritmos , Animais , Teorema de Bayes , Feminino , Funções Verossimilhança , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oryza/genética , Fenótipo , Análise de Sobrevida
18.
PLoS One ; 5(7): e11396, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20644725

RESUMO

Despite the fact that genetic imprinting, i.e., differential expression of the same allele due to its different parental origins, plays a pivotal role in controlling complex traits or diseases, the origin, action and transmission mode of imprinted genes have still remained largely unexplored. We present a new strategy for studying these properties of genetic imprinting with a two-stage reciprocal F mating design, initiated with two contrasting inbred lines. This strategy maps quantitative trait loci that are imprinted (i.e., iQTLs) based on their segregation and transmission across different generations. By incorporating the allelic configuration of an iQTL genotype into a mixture model framework, this strategy provides a path to trace the parental origin of alleles from previous generations. The imprinting effects of iQTLs and their interactions with other traditionally defined genetic effects, expressed in different generations, are estimated and tested by implementing the EM algorithm. The strategy was used to map iQTLs responsible for survival time with four reciprocal F populations and test whether and how the detected iQTLs inherit their imprinting effects into the next generation. The new strategy will provide a tool for quantifying the role of imprinting effects in the creation and maintenance of phenotypic diversity and elucidating a comprehensive picture of the genetic architecture of complex traits and diseases.


Assuntos
Locos de Características Quantitativas , Algoritmos , Simulação por Computador , Impressão Genômica/genética , Genótipo , Funções Verossimilhança
19.
Proc Am Thorac Soc ; 7(4): 294-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20601635

RESUMO

Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.


Assuntos
Cloro/toxicidade , Gases/toxicidade , Genômica , Pneumopatias/induzido quimicamente , Pneumopatias/genética , Pulmão/efeitos dos fármacos , Animais , Feminino , Predisposição Genética para Doença , Exposição por Inalação , Pneumopatias/prevenção & controle , Camundongos , Camundongos Endogâmicos , Modelos Animais
20.
J Virol ; 84(5): 2257-69, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20015999

RESUMO

Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in infants, with about half being infected in their first year of life. Yet only 2 to 3% of infants are hospitalized for RSV infection, suggesting that individual susceptibility contributes to disease severity. Previously, we determined that AKR/J (susceptible) mice developed high lung RSV titers and showed delayed weight recovery, whereas C57BL/6J (resistant) mice demonstrated low lung RSV titers and rapid weight recovery. In addition, we have reported that gene-targeted mice lacking the cystic fibrosis transmembrane conductance regulator (Cftr; ATP-binding cassette subfamily C, member 7) are susceptible to RSV infection. For this report, recombinant backcross and F2 progeny derived from C57BL/6J and AKR/J mice were infected with RSV, their lung titers were measured, and quantitative trait locus (QTL) analysis was performed. A major QTL, designated Rsvs1, was identified on proximal mouse chromosome 6 in both recombinant populations. Microarray analysis comparing lung transcripts of the parental strains during infection identified several candidate genes that mapped to the Rsvs1 interval, including Cftr. These findings add to our understanding of individual RSV susceptibility and strongly support a modifier role for CFTR in RSV infection, a significant cause of respiratory morbidity in infants with cystic fibrosis.


Assuntos
Suscetibilidade a Doenças , Estudo de Associação Genômica Ampla , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vírus Sinciciais Respiratórios/genética , Animais , Criança , Pré-Escolar , Mapeamento Cromossômico , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Lactente , Escore Lod , Pulmão/fisiologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Locos de Características Quantitativas , Infecções por Vírus Respiratório Sincicial/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA