Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(10): 2598-2601, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561410

RESUMO

Visible-light integrated photonics is emerging as a promising technology for the realization of optical devices for applications in sensing, quantum information and communications, imaging, and displays. Among the existing photonic platforms, high-index-contrast silicon nitride (Si3N4) waveguides offer broadband transparency in the visible spectral range and a high scale of integration. As the complexity of photonic integrated circuits (PICs) increases, on-chip detectors are required to monitor their working point for reconfiguration and stabilization operations. In this Letter, we present a semi-transparent in-line power monitor integrated on Si3N4 waveguides that operates in the red-light wavelength range (660 nm). The proposed device exploits the photoconductivity of a hydrogenated amorphous-silicon (a-Si:H) film that is evanescently coupled to an optical waveguide. Experimental results show a responsivity of 30 mA/W, a sensitivity of -45 dBm, and a sub-µs time response. These features enable the use of the proposed photoconductor for high-sensitivity monitoring and control of visible-light Si3N4 PICs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA