Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950398

RESUMO

BACKGROUND: The widely used magnetization-prepared rapid gradient-echo (MPRAGE) sequence makes enhancing lesions and blood vessels appear bright after gadolinium administration. However, dark blood imaging using T1-weighted Sampling Perfection with Application optimized Contrast using different flip angle Evolution (T1 SPACE) can be advantageous since it improves the conspicuity of small metastases and leptomeningeal disease. As a potential alternative to T1 SPACE, we evaluated a new dark blood sequence called echo-uT1 RESS (unbalanced T1 Relaxation-Enhanced Steady-State). PURPOSE: We compared the performance of echo-uT1 RESS with Dixon fid-uT1 RESS, MPRAGE, and T1 SPACE. STUDY TYPE: Retrospective, IRB approved. SUBJECTS/PHANTOM: Phantom to assess flow properties of echo-uT1 RESS. Twenty-one patients (14 female, age range 35-82 years) with primary and secondary brain tumors. FIELD STRENGTH/SEQUENCES: 3 Tesla/MPRAGE, T1 SPACE, Dixon fid-uT1 RESS, echo-uT1 RESS. ASSESSMENT: Flow phantom signal vs. velocity as a function of flip angle and sequence. Qualitative image assessment on 4-point scale. Quantitative evaluation of tumor-to-brain contrast, apparent contrast-to-noise ratio (aCNR), and vessel-to-brain aCNR. STATISTICAL TESTS: Friedman and Mann-Whitney U tests. A P value <0.05 was considered statistically significant. RESULTS: In the phantom, echo-uT1 RESS showed greater flow-dependent signal loss than fid-uT1 RESS. In patients, blood vessels appeared bright with MPRAGE, gray with fid-uT1 RESS, and dark with T1 SPACE and echo-uT1 RESS. For MPRAGE, Dixon fid-uT1 RESS, echo-uT1 RESS, and T1 SPACE, respective tumor-to-brain contrast values were 0.6 ± 0.3, 1.3 ± 0.5, 1.0 ± 0.4, and 0.6 ± 0.4, while normalized aCNR values were 68.9 ± 50.9, 128.4 ± 59.2, 74.2 ± 42.1, and 99.4 ± 73.9. DATA CONCLUSION: Volumetric dark blood contrast-enhanced brain MRI is feasible using echo-uT1 RESS. The dark blood effect was improved vs. fid-uT1 RESS, while both uT1 RESS versions provided better tumor-to-brain contrast than MPRAGE. Whereas T1 SPACE provided better tumor aSNR, echo-uT1 RESS provided better Weber contrast, lesion sharpness and a more consistent dark blood effect. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

2.
Magn Reson Med ; 81(4): 2424-2438, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30431176

RESUMO

PURPOSE: Background phase offsets in phase-contrast MRI are often corrected using polynomial regression; however, correction performance degrades when temporally invariant outliers such as steady flow or spatial wrap-around artifact are present. We describe and validate an iterative method called automatic rejection of temporally invariant outliers (ARTO), which excludes these outliers from the fitting process. METHODS: The ARTO method iteratively removes pixels with large polynomial regression errors analyzed by a Gaussian mixture model fitting of the residual distribution. A total of 150 trials of a simulated phantom (75 with wrap-around artifact) and 125 phase-contrast MRI cines from 22 healthy subjects (48 with wrap-around artifact) were used for validation. Background phase offsets were corrected using second-order weighted regularized least squares (WRLS) with and without ARTO. Flow volumes after WRLS and WRLS+ARTO corrections were compared with the known truth (phantom) and stationary phantom reference (in vivo) using Bland-Altman analysis. The ratio between the pulmonary flow and the systemic flow was also computed in a subset of 6 subjects. RESULTS: In the simulated phantom, compared with WRLS and no correction, correction with WRLS+ARTO produced superior agreement in volumetric flow quantification with the known truth. In vivo, WRLS+ARTO also produced superior agreement with stationary phantom-corrected volumetric flow compared with WRLS and no correction. In data sets with wrap-around artifact, WRLS produced significantly larger variance in the pulmonary flow and systemic flow ratio than stationary phantom correction (P = .0008). CONCLUSION: The proposed method provides automatic exclusion of temporally invariant outliers and produces flow quantification results comparable to stationary phantom correction.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Adulto , Algoritmos , Aorta Torácica/diagnóstico por imagem , Artefatos , Simulação por Computador , Voluntários Saudáveis , Hemodinâmica , Humanos , Análise dos Mínimos Quadrados , Modelos Teóricos , Distribuição Normal , Estudos Prospectivos , Artéria Pulmonar/diagnóstico por imagem , Análise de Regressão , Volume Sistólico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA