Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38712152

RESUMO

Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present the first formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Interestingly, sublines previously observed to be resistant to anti-CTLA-4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression.

2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617360

RESUMO

APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.

3.
PLoS Comput Biol ; 19(9): e1011472, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721939

RESUMO

There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Transcriptoma , Comunicação Celular , Transformação Celular Neoplásica , Microambiente Tumoral , Biomarcadores Tumorais/genética
4.
Trends Mol Med ; 29(7): 554-566, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37076339

RESUMO

Cancer cells accumulate many genetic alterations throughout their lifetime, but only a few of them drive cancer progression, termed driver mutations. Driver mutations may vary between cancer types and patients, can remain latent for a long time and become drivers at particular cancer stages, or may drive oncogenesis only in conjunction with other mutations. The high mutational, biochemical, and histological tumor heterogeneity makes driver mutation identification very challenging. In this review we summarize recent efforts to identify driver mutations in cancer and annotate their effects. We underline the success of computational methods to predict driver mutations in finding novel cancer biomarkers, including in circulating tumor DNA (ctDNA). We also report on the boundaries of their applicability in clinical research.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Mutação , Carcinogênese/genética , Biomarcadores Tumorais/genética
5.
Genome Med ; 15(1): 15, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879282

RESUMO

BACKGROUND: There has been a growing appreciation recently that mutagenic processes can be studied through the lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. However, the causal links between mutagens and observed mutation patterns as well as other types of interactions between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational signatures. METHODS: To gain insights into these relationships, we developed a network-based method, named GENESIGNET that constructs an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes. RESULTS: Applying GENESIGNET to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GENESIGNET also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GENESIGNET also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway. CONCLUSIONS: GENESIGNET provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The GENESIGNET method was implemented in python, and installable package, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/GeneSigNet.


Assuntos
Fenômenos Biológicos , Neoplasias da Mama , Humanos , Feminino , Mutação , Mutagênicos , Neoplasias da Mama/genética , Núcleo Celular
6.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36945455

RESUMO

There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such regulation. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights for the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations. The TranNet method was implemented in python, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/TranNet .

7.
Methods Mol Biol ; 2651: 179-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892768

RESUMO

Z-DNAs are nucleic acid secondary structures that form within a special pattern of nucleotides and are promoted by DNA supercoiling. Through Z-DNA formation, DNA encodes information by dynamic changes in its secondary structure. A growing body of evidence indicates that Z-DNA formation can play a role in gene regulation; it can affect chromatin architecture and demonstrates its association with genomic instability, genetic diseases, and genome evolution. Many functional roles of Z-DNA are yet to be discovered highlighting the need for techniques to detect genome-wide folding of DNA into this structure. Here, we describe an approach to convert linear genome into supercoiled genome sponsoring Z-DNA formation. Applying permanganate-based methodology and high-throughput sequencing to supercoiled genome allows genome-wide detection of single-stranded DNA. Single-stranded DNA is characteristic of the junctions between the classical B-form of DNA and Z-DNA. Consequently, analysis of single-stranded DNA map provides snapshots of the Z-DNA conformation over the whole genome.


Assuntos
DNA Forma Z , DNA de Cadeia Simples , DNA/genética , DNA/química , Conformação de Ácido Nucleico , Cromatina , DNA Super-Helicoidal/genética
8.
J Comput Biol ; 30(1): 21-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037023

RESUMO

Gene expression evolution is typically modeled with the stochastic Ornstein-Uhlenbeck (OU) process. It has been suggested that the estimation of within-species variations using replicated data can increase the predictive power of such models, but this hypothesis has not been fully tested. We developed EvoGeneX, a computationally efficient implementation of the OU-based method that models within-species variation. Using extensive simulations, we show that modeling within-species variations and appropriate selection of species improve the performance of the model. Further, to facilitate a comparative analysis of expression evolution, we introduce a formal measure of evolutionary expression divergence for a group of genes using the rate and the asymptotic level of divergence. With these tools in hand, we performed the first-ever analysis of the evolution of gene expression across different body-parts, species, and sexes of the Drosophila genus. We observed that genes with adaptive expression evolution tend to be body-part specific, whereas the genes with constrained evolution tend to be shared across body-parts. Among the neutrally evolving gene expression patterns, gonads in both sexes have higher expression divergence relative to other tissues and the male gonads have even higher divergence than the female gonads. Among the evolutionarily constrained genes, the gonads show different divergence patterns, where the male gonads, and not the female gonads, show less constrained divergence than other body-parts. Finally, we show interesting examples of adaptive expression evolution, including adaptation of odor binding proteins.


Assuntos
Drosophila , Evolução Molecular , Animais , Feminino , Masculino , Drosophila/genética , Filogenia , Expressão Gênica
9.
Methods Mol Biol ; 2570: 73-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36156775

RESUMO

Next-generation systematic evolution of ligands by exponential enrichment approaches consistently combine the experimental protocol with high-throughput sequencing after each round of selection. This extension, known as HT-SELEX, results in a vast amount of raw sequencing data that requires tailored bioinformatics approaches to efficiently process and analyze these reads. Here, we present a step-by-step walkthrough of AptaSUITE, a previously published, open-source, and platform-independent software collection of peer-reviewed bioinformatics tools for HT-SELEX data, integrated into a convenient and efficient graphical user interface. We highlight AptaSUITE's main components and illustrate their utility for a variety of usage scenarios. These include, but are not limited to, computational solutions for data preprocessing such as demultiplexing and quality control, aptamer candidate identification, as well as binding motif elucidation. Taken together, AptaSUITE comprises a complete bioinformatics solution for HT-SELEX data analysis while providing real-time, intuitive, and graphical access to the aptamer information.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Técnica de Seleção de Aptâmeros/métodos , Software
10.
Commun Biol ; 5(1): 1282, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418514

RESUMO

The inference of Gene Regulatory Networks (GRNs) is one of the key challenges in systems biology. Leading algorithms utilize, in addition to gene expression, prior knowledge such as Transcription Factor (TF) DNA binding motifs or results of TF binding experiments. However, such prior knowledge is typically incomplete, therefore, integrating it with gene expression to infer GRNs remains difficult. To address this challenge, we introduce NetREX-CF-Regulatory Network Reconstruction using EXpression and Collaborative Filtering-a GRN reconstruction approach that brings together Collaborative Filtering to address the incompleteness of the prior knowledge and a biologically justified model of gene expression (sparse Network Component Analysis based model). We validated the NetREX-CF using Yeast data and then used it to construct the GRN for Drosophila Schneider 2 (S2) cells. To corroborate the GRN, we performed a large-scale RNA-Seq analysis followed by a high-throughput RNAi treatment against all 465 expressed TFs in the cell line. Our knockdown result has not only extensively validated the GRN we built, but also provides a benchmark that our community can use for evaluating GRNs. Finally, we demonstrate that NetREX-CF can infer GRNs using single-cell RNA-Seq, and outperforms other methods, by using previously published human data.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Humanos , Animais , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Biologia de Sistemas , Drosophila/genética , Saccharomyces cerevisiae/genética , Expressão Gênica
11.
Biomolecules ; 12(10)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36291592

RESUMO

Smoking is a widely recognized risk factor in the emergence of cancers and other lung diseases. Studies of non-cancer lung diseases typically investigate the role that smoking has in chronic changes in lungs that might predispose patients to the diseases, whereas most cancer studies focus on the mutagenic properties of smoking. Large-scale cancer analysis efforts have collected expression data from both tumor and control lung tissues, and studies have used control samples to estimate the impact of smoking on gene expression. However, such analyses may be confounded by tumor-related micro-environments as well as patient-specific exposure to smoking. Thus, in this paper, we explore the utilization of mutational signatures to study environment-induced changes of gene expression in control lung tissues from lung adenocarcinoma samples. We show that a joint computational analysis of mutational signatures derived from sequenced tumor samples, and the gene expression obtained from control samples, can shed light on the combined impact that smoking and tumor-related micro-environments have on gene expression and cell-type composition in non-neoplastic (control) lung tissue. The results obtained through such analysis are both supported by experimental studies, including studies utilizing single-cell technology, and also suggest additional novel insights. We argue that the study provides a proof of principle of the utility of mutational signatures to be used as sensors of environmental exposures not only in the context of the mutational landscape of cancer, but also as a reference for changes in non-cancer lung tissues. It also provides an example of how a database collected with the purpose of understanding cancer can provide valuable information for studies not directly related to the disease.


Assuntos
Pneumopatias , Neoplasias Pulmonares , Neoplasias , Humanos , Mutação , Neoplasias/genética , Fumar/efeitos adversos , Fumar/genética , Pulmão , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
12.
Science ; 375(6584): eabk2432, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239393

RESUMO

For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Transcriptoma , Animais , Núcleo Celular/metabolismo , Bases de Dados Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Insetos , Masculino , RNA-Seq , Caracteres Sexuais , Análise de Célula Única , Fatores de Transcrição/genética
13.
Annu Rev Biomed Data Sci ; 4: 189-206, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465178

RESUMO

Mutations are the driving force of evolution, yet they underlie many diseases, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, and dysregulation of DNA repair mechanisms. High-throughput sequencing has made it possible to generate large datasets to study mutational processes in health and disease. Since the emergence of the first mutational process studies in 2012, this field is gaining increasing attention and has already accumulated a host of computational approaches and biomedical applications.


Assuntos
Neoplasias , Dano ao DNA , Reparo do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Neoplasias/genética
14.
Cell Syst ; 12(10): 994-1003.e4, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34375586

RESUMO

Cancer genomes accumulate a large number of somatic mutations resulting from a combination of stochastic errors in DNA processing, cancer-related aberrations of the DNA repair machinery, or carcinogenic exposures; each mutagenic process leaves a characteristic mutational signature. A key challenge is understanding the interactions between signatures, particularly as DNA repair deficiencies often modify the effects of other mutagens. Here, we introduce RepairSig, a computational method that explicitly models additive primary mutagenic processes; non-additive secondary processes, which interact with the primary processes; and a mutation opportunity, that is, the distribution of sites across the genome that are vulnerable to damage or preferentially repaired. We demonstrate that RepairSig accurately recapitulates experimentally identified signatures, identifies autonomous signatures of deficient DNA repair processes, and explains mismatch repair deficiency in breast cancer by de novo inference of both primary and secondary signatures from patient data. RepairSig is freely available for download at https://github.com/ncbi/RepairSig.


Assuntos
Neoplasias da Mama , Dano ao DNA , Neoplasias da Mama/genética , DNA , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética
15.
Bioinformatics ; 37(Suppl_1): i7-i8, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252970
16.
Science ; 371(6526): 233-234, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33446542

Assuntos
Idioma , Vírus , Aprendizagem
17.
iScience ; 23(10): 101619, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33089107

RESUMO

Phenotypic heterogeneity in cancer is often caused by different patterns of genetic alterations. Understanding such phenotype-genotype relationships is fundamental for the advance of personalized medicine. We develop a computational method, named NETPHIX (NETwork-to-PHenotype association with eXclusivity) to identify subnetworks of genes whose genetic alterations are associated with drug response or other continuous cancer phenotypes. Leveraging interaction information among genes and properties of cancer mutations such as mutual exclusivity, we formulate the problem as an integer linear program and solve it optimally to obtain a subnetwork of associated genes. Applied to a large-scale drug screening dataset, NETPHIX uncovered gene modules significantly associated with drug responses. Utilizing interaction information, NETPHIX modules are functionally coherent and can thus provide important insights into drug action. In addition, we show that modules identified by NETPHIX together with their association patterns can be leveraged to suggest drug combinations.

18.
Genome Med ; 12(1): 52, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471470

RESUMO

BACKGROUND: Studies of cancer mutations have typically focused on identifying cancer driving mutations that confer growth advantage to cancer cells. However, cancer genomes accumulate a large number of passenger somatic mutations resulting from various endogenous and exogenous causes, including normal DNA damage and repair processes or cancer-related aberrations of DNA maintenance machinery as well as mutations triggered by carcinogenic exposures. Different mutagenic processes often produce characteristic mutational patterns called mutational signatures. Identifying mutagenic processes underlying mutational signatures shaping a cancer genome is an important step towards understanding tumorigenesis. METHODS: To investigate the genetic aberrations associated with mutational signatures, we took a network-based approach considering mutational signatures as cancer phenotypes. Specifically, our analysis aims to answer the following two complementary questions: (i) what are functional pathways whose gene expression activities correlate with the strengths of mutational signatures, and (ii) are there pathways whose genetic alterations might have led to specific mutational signatures? To identify mutated pathways, we adopted a recently developed optimization method based on integer linear programming. RESULTS: Analyzing a breast cancer dataset, we identified pathways associated with mutational signatures on both expression and mutation levels. Our analysis captured important differences in the etiology of the APOBEC-related signatures and the two clock-like signatures. In particular, it revealed that clustered and dispersed APOBEC mutations may be caused by different mutagenic processes. In addition, our analysis elucidated differences between two age-related signatures-one of the signatures is correlated with the expression of cell cycle genes while the other has no such correlation but shows patterns consistent with the exposure to environmental/external processes. CONCLUSIONS: This work investigated, for the first time, a network-level association of mutational signatures and dysregulated pathways. The identified pathways and subnetworks provide novel insights into mutagenic processes that the cancer genomes might have undergone and important clues for developing personalized drug therapies.


Assuntos
Neoplasias da Mama/genética , Desaminases APOBEC/genética , Feminino , Humanos , Mutação , Fenótipo
19.
ACS Comb Sci ; 22(6): 306-310, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418423

RESUMO

Peptide macrocyclization is typically associated with the development of higher affinity and more protease stable protein ligands, and, as such, is an important tool in peptide drug discovery. Yet, within the context of a diverse library, does cyclization give inherent advantages over linear peptides? Here, we used mRNA display to create a peptide library of diverse ring sizes and topologies (monocyclic, bicyclic, and linear). Several rounds of in vitro selection against streptavidin were performed and the winning peptide sequences were analyzed for their binding affinities and overall topologies. The effect of adding a protease challenge on the enrichment of various peptides was also investigated. Taken together, the selection output yields insights about the relative abundance of binders of various topologies within a structurally diverse library.


Assuntos
Biblioteca de Peptídeos , Peptídeos/química , RNA Mensageiro , Sequência de Aminoácidos , Descoberta de Drogas , Peptídeos/farmacologia
20.
J Comput Biol ; 27(3): 356-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32160038

RESUMO

The AptaBlocks Web Interface is focused on providing graphical, intuitive, and platform-independent access to AptaBlocks, an experimentally validated algorithmic approach for the in silico design of oligonucleotide sticky bridges. The availability of AptaBlocks online to the nucleic acid research community at large makes this software a highly effective tool for accelerating the design and development of novel oligonucleotide-based drugs and other biotechnologies.


Assuntos
Biologia Computacional/métodos , Oligonucleotídeos/química , Algoritmos , Simulação por Computador , Desenho de Fármacos , Humanos , Internet , Modelos Teóricos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA