Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Circulation ; 118(11): 1202-11, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18779456

RESUMO

The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of cardiologists, cardiac electrophysiologists, cell biophysicists, and computational modelers on August 20 and 21, 2007, in Washington, DC, to advise the NHLBI on new research directions needed to develop integrative approaches to elucidate human cardiac function. The workshop strove to identify limitations in the use of data from nonhuman animal species for elucidation of human electromechanical function/activity and to identify what specific information on ion channel kinetics, calcium handling, and dynamic changes in the intracellular/extracellular milieu is needed from human cardiac tissues to develop more robust computational models of human cardiac electromechanical activity. This article summarizes the workshop discussions and recommendations on the following topics: (1) limitations of animal models and differences from human electrophysiology, (2) modeling ion channel structure/function in the context of whole-cell electrophysiology, (3) excitation-contraction coupling and regulatory pathways, (4) whole-heart simulations of human electromechanical activity, and (5) what human data are currently needed and how to obtain them. The recommendations can be found on the NHLBI Web site at http://www.nhlbi.nih.gov/meetings/workshops/electro.htm.


Assuntos
Eletrofisiologia Cardíaca/métodos , Coração/fisiologia , Modelos Cardiovasculares , Animais , Doenças Cardiovasculares/fisiopatologia , Simulação por Computador , Humanos , Canais Iônicos/química , Canais Iônicos/fisiologia , Modelos Animais , Contração Miocárdica , National Institutes of Health (U.S.) , Estados Unidos
2.
Circulation ; 116(20): 2325-45, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17998470

RESUMO

The National Heart, Lung, and Blood Institute and Office of Rare Diseases at the National Institutes of Health organized a workshop (September 14 to 15, 2006, in Bethesda, Md) to advise on new research directions needed for improved identification and treatment of rare inherited arrhythmias. These included the following: (1) Na+ channelopathies; (2) arrhythmias due to K+ channel mutations; and (3) arrhythmias due to other inherited arrhythmogenic mechanisms. Another major goal was to provide recommendations to support, enable, or facilitate research to improve future diagnosis and management of inherited arrhythmias. Classifications of electric heart diseases have proved to be exceedingly complex and in many respects contradictory. A new contemporary and rigorous classification of arrhythmogenic cardiomyopathies is proposed. This consensus report provides an important framework and overview to this increasingly heterogeneous group of primary cardiac membrane channel diseases. Of particular note, the present classification scheme recognizes the rapid evolution of molecular biology and novel therapeutic approaches in cardiology, as well as the introduction of many recently described diseases, and is unique in that it incorporates ion channelopathies as a primary cardiomyopathy in consensus with a recent American Heart Association Scientific Statement.


Assuntos
Arritmias Cardíacas , Cardiomiopatias/genética , Canalopatias , Síndrome do QT Longo , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Cardiomiopatias/diagnóstico , Cardiomiopatias/terapia , Canalopatias/diagnóstico , Canalopatias/genética , Canalopatias/terapia , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Mutação , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Estados Unidos
3.
Heart Rhythm ; 2(6): 650-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15922277

RESUMO

Cardiac arrhythmias continue to pose a major medical challenge and significant public health burden. Atrial fibrillation, the most prevalent arrhythmia, affects more than two million Americans annually and is associated with a twofold increase in mortality. In addition, more than 250,000 Americans each year suffer ventricular arrhythmias, often resulting in sudden cardiac death. Despite the high incidence and societal impact of cardiac arrhythmias, presently there are insufficient insights into the molecular mechanisms involved in arrhythmia generation, propagation, and/or maintenance or into the molecular determinants of disease risk, prognosis, and progression. In addition, present therapeutic strategies for arrhythmia abatement often are ineffective or require palliative device therapy after persistent changes in the electrical and conduction characteristics of the heart have occurred, changes that appear to increase the risk for arrhythmia progression. This article reviews our present understanding of the complexity of mechanisms that regulate cardiac membrane excitability and cardiac function and explores the role of derangements in these mechanisms that interact to induce arrhythmogenic substrates. Approaches are recommended for future investigations focused on providing new mechanistic insights and therapeutic interventions.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco/fisiologia , Arritmias Cardíacas/genética , Progressão da Doença , Matriz Extracelular/fisiologia , Humanos , Canais Iônicos/fisiologia , Prognóstico , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA