Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ter Arkh ; 93(7): 763-769, 2021 Jul 23.
Artigo em Russo | MEDLINE | ID: mdl-36286726

RESUMO

BACKGROUND: LiFraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary disorder that is characterized by an increased risk for certain types of cancer, acute lymphoblastic leukemia (ALL), particularly. Germline TP53 mutations are associated with LFS. Genetic counseling and follow-up is essential for patients with LFS and their relatives. Special therapeutic approaches are needed for treatment of oncological disease in these patients. The article presents a series of clinical cases of patients with ALL and SLF, considers general issues of diagnosis and treatment of adult patients with this hereditary genetic syndrome. AIM: Describe clinical observations of patients with acute lymphoblastic leukemia (ALL) and LFS and consider general issues of diagnosis and treatment of adult patients with LFS and ALL. MATERIALS AND METHODS: TP53 gene mutations were screened using Sanger sequencing in 180 de novo patients with Ph-negative (B- and T-cell) and Ph-positive ALL treated by Russian multicenter protocols (ALL-2009, ALL-2012, ALL-2016) at the National Research Center for Hematology, Moscow, Russia, and at the hematology departments of regional clinics of Russia (multicenter study participants). RESULTS: TP53 gene mutations were found in 7.8% (n=14) of de novo ALL patients. In patients, whose biological material was available TP53 gene mutational status was determined in non-tumor cells (bone marrow and peripheral blood during remission, bone marrow samples after allogeneic hematopoietic stem cells transplantation and in tissue of non-hematopoietic origin) for discriminating germline mutations. The analysis included 5 patients (out of 14 with TP53 mutations), whose non-tumor biological material was available for research. Germline status was confirmed in 4 out of 5 B-cell ALL (n=3), T-cell ALL (n=1) investigated patients. CONCLUSION: Practical value of the research is the observation that the greater part of TP53 gene mutations in patients with Ph-negative B-cell ALL are germinal and associated with LFS.


Assuntos
Síndrome de Li-Fraumeni , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/terapia , Genes p53/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
2.
Ter Arkh ; 92(7): 31-42, 2020 Sep 01.
Artigo em Russo | MEDLINE | ID: mdl-33346443

RESUMO

ISSUE: The study of activating mutations (NRAS,KRAS,FLT3,JAK2,CRLF2genes) of RAS/RAF/MEK/ERK and JAK/STAT signaling pathways in B-cell acute lymphoblastic leukemia (B-ALL) in adult patients which are included in Russian multicenter clinical trials. MATERIALS AND METHODS: Within the multicenter study there were 119 adult patients included withde novoB-ALL. The study was considered as prospective and retrospective. The group withBCR-ABL1-negative B-ALL consisted of up to 93 patients (45 male and 48 female, at the age of 17 to 59, the median age 31), they were treated according to the protocols ALL-2009, ALL-2016. The median follow-up lasted for 19 months (1119). The group withBCR-ABL1-positive B-ALL with up to 26 patients (10 male and 16 female, at the age of 23 to 78, the median age 34 years) was included in the study as well. The treatment was carried out according to the protocols ALL-2009 and ALL-2012 in combination with tyrosine kinase inhibitors. The median follow-up lasted for 23 months (4120). The molecular analysis of activating mutations inNRAS,KRASgenes (RAS/RAF/MEK/ERK signaling pathway) andJAK2,CRLF2genes (JAK/STAT signaling cascade) was performed via Sanger sequencing. The internal tandem duplications (ITDs) inFLT3gene were studied by fragment analysis. The evaluation of CRLF2 expression was fulfilled via flow cytometry. RESULTS: Activating mutations inNRAS,KRAS,FLT3genes were found in 22 (23.6%) patients withBCR-ABL1-negative B-ALL. In total, 23 mutations were revealed in theNRAS(n=9),KRAS(n=12), andFLT3(n=2) genes, according to statistics that was significantly more frequent than withBCR-ABL1-positive B-ALL, these genes mutations were not identified in patients (p=0.007). The frequency of mutations detection inKRASandNRASgenes in patients withBCR-ABL1-negative B-ALL was comparable as 12.9% (12 of 93) to 9.7% (9 of 93), respectively (p=0.488). One patient was simultaneously revealed 2 mutations in theKRASgene (in codons 13 and 61).FLT3-ITD mutations were detected in 3.5% (2 of 57) cases ofBCR-ABL1-negative B-ALL. In patients withBCR-ABL1-positive B-ALLFLT3-ITD mutations were not assessed. Violations in the JAK/STAT signaling cascade were detected in 4 (4.3%) patients withBCR-ABL1-negative B-ALL. They were represented by the missense mutations ofJAK2gene (n=3) and the overexpression of CRLF2 (n=2); in one patient were detected the overexpression of CRLF2 and a mutation inJAK2gene simultaneously. No mutations were found inCRLF2gene. In patients withBCR-ABL1-positive B-ALL noJAK2mutations were detected. As long as analyzing demographic and clinical laboratory parameters between groups of patients with and without mutations, there were no statistically significant differences obtained. In the analyzed groups of patients, long-term therapy results did not differentiate according to the mutations presence inNRAS,KRAS,FLT3,JAK2genes. Also, substantive differences were not shown in the rate of the negative status achievement of the minimum residual disease between patients with and without activating mutations in the control points of the protocol (on the 70th, 133rd and 190th days). CONCLUSION: NRAS,KRAS,FLT3,JAK2activating mutations do not affect the long-term results of the therapy and the rate of the negative status achievement of the minimum residual disease in patients withBCR-ABL1-negative B-ALL treated by the Russian multicenter clinical trials.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Adulto , Feminino , Humanos , Masculino , Mutação , Estudos Prospectivos , Estudos Retrospectivos , Federação Russa
3.
Ter Arkh ; 90(7): 118-122, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30701933

RESUMO

The article provides review of possible mechanisms of inhibitor coagulopathies, in particular of acquired hemophilia A. This pathology is an extremely rare disease occurring in 1-2 cases in 1 million per year. In the present study we provide data for two clinical cases of hemophilia A in women. These cases had different development mechanisms, although both women have a newly discovered missense mutation His2026Arg in the VIII factor gene. The matter of main interest is the description of the disease development in the patient with an acquired idiopathic hemophilia A with a possible disease occurrence due to an asymmetric X-chromosome inactivation (lyonization). In this particular case lyonization led to the late manifestation of the hemophilia A carrier's state and development of severe form of the inhibitor-associated acquired hemophilia A. We also discuss therapeutic approaches to these forms of the disease, considering there are no concise protocols for case management due to an extreme rarity of the pathology. Acquainting the clinical personnel working it the different areas of medicine with suchlike inhibitor coagulopathies has a major practical importance.


Assuntos
Fator VIII/genética , Hemofilia A/genética , Mutação de Sentido Incorreto , Fator VIIa/uso terapêutico , Feminino , Hemofilia A/sangue , Hemofilia A/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Prednisolona/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento
4.
Genetika ; 52(4): 466-73, 2016 Apr.
Artigo em Russo | MEDLINE | ID: mdl-27529981

RESUMO

Hemophilia B is a hereditary X-linked coagulation disorder. This pathology is caused by various defects in the factor IX gene, which is, being about 34 kb long and consisting of eight exons, localized in the Xq27 locus of the. X-chromosome long arm. Mutations were revealed in 56 unrelated patients with hemophilia B in this study by using direct sequencing of factor IX gene functionally important fragments. Forty-six mutations were found with prevailing missense mutations (n = 30). The rest of the mutations were nonsense (n = 4) and splicing (n = 4) mutations, large deletions (n = 3), microdeletions (n = 2), microinsertions (n = 2), and promoter mutations (n = 1). Eleven of 46 mutations were previously unknown for human populations.


Assuntos
Análise Mutacional de DNA , Fator IX/genética , Hemofilia B/genética , Mutação/genética , Feminino , Genética Populacional , Hemofilia B/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Regiões Promotoras Genéticas , Federação Russa , Análise de Sequência de DNA
5.
Ter Arkh ; 88(7): 78-83, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27459619

RESUMO

AIM: to estimate the spread of weak D antigen types of the Rhesus system in the citizens of the Russian Federation and a possibility of serologically identifying these types. SUBJECTS AND METHODS: The red blood cells and DNA of people with weakened expression of D antigen were investigated using erythrocyte agglutination reaction in salt medium (2 methods); agglutination reaction in the gel columns containing IgM + IgG anti-D antibodies, indirect antiglobulin test with IgG anti-D antibodies (2 methods); polymerase chain reaction to establish the type of weak D. RESULTS: A rhesus phenotype was determined in 5100 people in 2014-2015. The weakened agglutinable properties of red blood cells were detected in 102 (2%) examinees. 63 examinees underwent genotyping to identify the variants of the weak D antigen, which identified 6 weak D types. There were the most common weak D types 3 (n=31 (49.2%)) and weak D type 1 (n=18 (28.6%)), including weak D type 1.1 in one (1.6%) case. The other 4 weak D antigen types were as follows: weak D type 2 (14.3% (n=9)), weak D type 15 (4.8% (n=3)), weak D type 4.2 (DAR) (1.6% (n=1)) and weak D type 6 (1.6% (n=1)). The antiglobulin test in the gel column containing antiglobulin serum was the most sensitive serological assay to identify the weak D antigen. Only a molecular test could establish weak D type 15 in 2 samples of red blood cells with Ccdee and ccdEe phenotypes. CONCLUSION: The weak D antigen could be serologically identified in 96.8% of cases. When testing for weak D, particular attention should be given to people with the D-negative phenotype who had the C or E antigens. Our investigations conducted for the first time in Russia will be able to improve the immunological safety of red blood cell-containing medium transfusions for patients.


Assuntos
Sistema do Grupo Sanguíneo Rh-Hr/classificação , Humanos , Fenótipo , Sistema do Grupo Sanguíneo Rh-Hr/genética , Federação Russa/epidemiologia
6.
Biochemistry (Mosc) ; 81(4): 373-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27293094

RESUMO

The hematopoietic bone marrow microenvironment is formed by proliferation and differentiation of mesenchymal stem cells (MSCs). The MSC compartment has been less studied than the hematopoietic stem cell compartment. To characterize the structure of the MSC compartment, it is necessary to trace the fate of distinct mesenchymal cells. To do so, mesenchymal progenitors need to be marked at the single-cell level. A method for individual marking of normal and cancer stem cells based on genetic "barcodes" has been developed for the last 10 years. Such approach has not yet been applied to MSCs. The aim of this study was to evaluate the possibility of using such barcoding strategy to mark MSCs and their descendants, colony-forming units of fibroblasts (CFU-Fs). Adherent cell layers (ACLs) of murine long-term bone marrow cultures (LTBMCs) were transduced with a lentiviral library with barcodes consisting of 32 + 3 degenerate nucleotides. Infected ACLs were suspended, and CFU-F derived clones were obtained. DNA was isolated from each individual colony, and barcodes were analyzed in marked CFU-F-derived colonies by means of conventional polymerase chain reaction and Sanger sequencing. Barcodes were identified in 154 marked colonies. All barcodes appeared to be unique: there were no two distinct colonies bearing the same barcode. It was shown that ACLs included CFU-Fs with different proliferative potential. MSCs are located higher in the hierarchy of mesenchymal progenitors than CFU-Fs, so the presented data indicate that MSCs proliferate rarely in LTBMCs. A method of stable individual marking and comparing the markers in mesenchymal progenitor cells has been developed in this work. We show for the first time that a barcoded library of lentiviruses is an effective tool for studying stromal progenitor cells.


Assuntos
Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Feminino , Biblioteca Gênica , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA