Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Genet ; 15: 1383609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706792

RESUMO

Background: In sub-Saharan Africa, 80% of poultry production is on smallholder village farms, where chickens are typically reared outdoors in free-ranging conditions. There is limited knowledge on chickens' phenotypic characteristics and genetics under these conditions. Objective: The present is a large-scale study set out to phenotypically characterise the performance of tropically adapted commercial chickens in typical smallholder farm conditions, and to examine the genetic profile of chicken phenotypes associated with growth, meat production, immunity, and survival. Methods: A total of 2,573 T451A dual-purpose Sasso chickens kept outdoors in emulated free-ranging conditions at the poultry facility of the International Livestock Research Institute in Addis Ababa, Ethiopia, were included in the study. The chickens were raised in five equally sized batches and were individually monitored and phenotyped from the age of 56 days for 8 weeks. Individual chicken data collected included weekly body weight, growth rate, body and breast meat weight at slaughter, Newcastle Disease Virus (NDV) titres and intestinal Immunoglobulin A (IgA) levels recorded at the beginning and the end of the period of study, and survival rate during the same period. Genotyping by sequencing was performed on all chickens using a low-coverage and imputation approach. Chicken phenotypes and genotypes were combined in genomic association analyses. Results: We discovered that the chickens were phenotypically diverse, with extensive variance levels observed in all traits. Batch number and sex of the chicken significantly affected the studied phenotypes. Following quality assurance, genotypes consisted of 2.9 million Single Nucleotide Polymorphism markers that were used in the genomic analyses. Results revealed a largely polygenic mode of genetic control of all phenotypic traits. Nevertheless, 15 distinct markers were identified that were significantly associated with growth, carcass traits, NDV titres, IgA levels, and chicken survival. These markers were located in regions harbouring relevant annotated genes. Conclusion: Results suggest that performance of chickens raised under smallholder farm conditions is amenable to genetic improvement and may inform selective breeding programmes for enhanced chicken productivity in sub-Saharan Africa.

2.
Vet Sci ; 11(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535863

RESUMO

Dogs with protein-losing enteropathy (PLE) caused by inflammatory enteritis, intestinal lymphangiectasia, or both, have a guarded prognosis, with death occurring as a result of the disease in approximately 50% of cases. Although dietary therapy alone is significantly associated with a positive outcome, there is limited ability to differentiate between food-responsive (FR) PLE and immunosuppressant-responsive (IR) PLE at diagnosis in dogs. Our objective was to determine if a transfer learning computational approach to image classification on duodenal biopsy specimens collected at diagnosis was able to differentiate FR-PLE from IR-PLE. This was a retrospective study using paraffin-embedded formalin-fixed duodenal biopsy specimens collected during upper gastrointestinal tract endoscopy as part of the diagnostic investigations from 17 client-owned dogs with PLE due to inflammatory enteritis at a referral teaching hospital that were subsequently classified based on treatment response into FR-PLE (n = 7) or IR-PLE (n = 10) after 4 months of follow-up. A machine-based algorithm was used on lower magnification and higher resolution images of endoscopic duodenal biopsy specimens. Using the pre-trained Convolutional Neural Network model with a 70/30 training/test ratio for images, the model was able to differentiate endoscopic duodenal biopsy images from dogs with FR-PLE and IR-PLE with an accuracy of 83.78%. Our study represents an important first step toward the use of machine learning in improving the decision-making process for clinicians with regard to the initial treatment of canine PLE.

3.
Equine Vet J ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221707

RESUMO

BACKGROUND: Excessive inbreeding increases the probability of uncovering homozygous recessive genotypes and has been associated with an increased risk of retained placenta and lower semen quality. No genomic analysis has investigated the association between inbreeding levels and pregnancy loss. OBJECTIVES: To compare genetic inbreeding coefficients (F) of naturally occurring Thoroughbred Early Pregnancy Loss (EPLs), Mid and Late term Pregnancy Loss (MLPL) and Controls. The F value was hypothesised to be higher in cases of pregnancy loss (EPLs and MLPLs) than Controls. STUDY DESIGN: Observational case-control study. METHODS: Allantochorion and fetal DNA from EPL (n = 37, gestation age 14-65 days), MLPL (n = 94, gestational age 70 days-24 h post parturition) and Controls (n = 58) were genotyped on the Axiom Equine 670K SNP Genotyping Array. Inbreeding coefficients using Runs of Homozygosity (FROH) were calculated using PLINK software. ROHs were split into size categories to investigate the recency of inbreeding. RESULTS: MLPLs had significantly higher median number of ROH (188 interquartile range [IQR], 180.8-197.3), length of ROH (3.10, IQR 2.93-3.33), and total number of ROH (590.8, IQR 537.3-632.3), and FROH (0.26, IQR 0.24-0.28) when compared with the Controls and the EPLs (p < 0.05). There was no significant difference in any of the inbreeding indices between the EPLs and Controls. The MLPLs had a significantly higher proportion of long (>10 Mb) ROH (2.5%, IQR 1.6-3.6) than the Controls (1.7%, IQR 0.6-2.5), p = 0.001. No unique ROHs were found in the EPL or MLPL populations. MAIN LIMITATIONS: SNP-array data does not allow analysis of every base in the sequence. CONCLUSIONS: This first study of the effect of genomic inbreeding levels on pregnancy loss showed that inbreeding is a contributor to MLPL, but not EPL in the UK Thoroughbred population. Mating choices remain critical, because inbreeding may predispose to MLPL by increasing the risk of homozygosity for specific lethal allele(s).

4.
J Dairy Sci ; 107(4): 2483-2498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37949408

RESUMO

Foot characteristics have been linked to the development of sole lesions (sole hemorrhage and sole ulcers) and white line lesions, also known as claw horn disruption lesions (CHDL). The objective of this study was to examine the association of claw anatomy and sole temperature with the development of CHDL. A cohort of 2,352 cows was prospectively enrolled from 4 UK farms and assessed at 3 time points: before calving (T1-precalving), immediately after calving (T2-calving), and in early lactation. At each time point body condition score was recorded, a thermography image of each foot was taken for sole temperature measurement, the presence of CHDL was assessed by veterinary surgeons, and an ultrasound image was taken to retrospectively measure the digital cushion and sole horn thickness. Additionally, at the postcalving time point, foot angle and heel depth were recorded. Four multivariable logistic regression models were fit to separately examine the relationship of precalving and postcalving explanatory variables with the development of either white line lesions or sole lesions. Explanatory variables tested included digital cushion thickness, sole horn thickness, sole temperature, foot angle, and heel depth. Farm, parity, body condition score, and presence of lesion at the time of measurement were also included in the models. A thicker digital cushion shortly after calving was associated with decreased odds of cows developing sole lesions during early lactation (odds ratio [OR]: 0.74, 95% confidence interval [CI]: 0.65-0.84). No association was found between digital cushion thickness and development of white line lesions. Sole temperature after calving was associated with increased odds of the development of sole lesions (OR: 1.03, 95% CI: 1.02-1.05), and sole temperature before and after calving was associated with the development of white line lesions (T1-precalving OR: 1.04, 95% CI: 1.01-1.07; T2-calving OR: 0.96, 95% CI: 0.93-0.99). Neither foot angle nor heel depth was associated with the development of either lesion type. However, an increased sole horn thickness after calving reduced the odds of cows developing sole lesions during early lactation (OR: 0.88, 95% CI: 0.83-0.93), highlighting the importance of maintaining adequate sole horn when foot trimming. Before calving, animals with a lesion at the time of measurement and a thicker sole were more likely to develop a sole lesion (OR: 1.23, 95% CI: 1.09-1.40), compared with those without a sole lesion. The results presented here suggest that white line and sole lesions may have differing etiopathogenesis. Results also confirm the association between the thickness of the digital cushion and the development of sole lesions, highlight the association between sole horn thickness and sole lesions, and challenge the potential importance of foot angle and heel depth in the development of CHDL.


Assuntos
Doenças dos Bovinos , Doenças do Pé , Casco e Garras , Humanos , Gravidez , Feminino , Bovinos , Animais , Doenças do Pé/diagnóstico por imagem , Doenças do Pé/veterinária , Doenças do Pé/complicações , Doenças dos Bovinos/etiologia , Estudos Prospectivos , Estudos Retrospectivos , Temperatura , Casco e Garras/diagnóstico por imagem , Casco e Garras/patologia , Coxeadura Animal/etiologia
6.
Genet Sel Evol ; 55(1): 60, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592264

RESUMO

BACKGROUND: The Connemara pony (CP) is an Irish breed that has experienced varied selection by breeders over the last fifty years, with objectives ranging from the traditional hardy pony to an agile athlete. We compared these ponies with well-studied Warmblood (WB) horses, which are also selectively bred for athletic performance but with a much larger census population. Using genome-wide single nucleotide polymorphism (SNP) and whole-genome sequencing data from 116 WB (94 UK WB and 22 European WB) and 36 CP (33 UK CP and 3 US CP), we studied the genomic diversity, inbreeding and population structure of these breeds. RESULTS: The k-means clustering approach divided both the CP and WB populations into four genetic groups, among which the CP genetic group 1 (C1) associated with non-registered CP, C4 with US CP, WB genetic group 1 (W1) with Holsteiners, and W3 with Anglo European and British WB. Maximum and mean linkage disequilibrium (LD) varied significantly between the two breeds (mean from 0.077 to 0.130 for CP and from 0.016 to 0.370 for WB), but the rate of LD decay was generally slower in CP than WB. The LD block size distribution peaked at 225 kb for all genetic groups, with most of the LD blocks not exceeding 1 Mb. The top 0.5% harmonic mean pairwise fixation index (FST) values identified ontology terms related to cancer risk when the four CP genetic groups were compared. The four CP genetic groups were less inbred than the WB genetic groups, but C2, C3 and C4 had a lower proportion of shorter runs of homozygosity (ROH) (74 to 76% < 4 Mb) than the four WB genetic groups (80 to 85% < 4 Mb), indicating more recent inbreeding. The CP and WB genetic groups had a similar ratio of effective number of breeders (Neb) to effective population size (Ne). CONCLUSIONS: Distinct genetic groups of individuals were revealed within each breed, and in WB these genetic groups reflected population substructure better than studbook or country of origin. Ontology terms associated with immune and inflammatory responses were identified from the signatures of selection between CP genetic groups, and while CP were less inbred than WB, the evidence pointed to a greater degree of recent inbreeding. The ratio of Neb to Ne was similar in CP and WB, indicating the influence of popular sires is similar in CP and WB.


Assuntos
Genômica , Endogamia , Animais , Cavalos/genética , Análise por Conglomerados , Homozigoto , Desequilíbrio de Ligação
7.
J Dairy Sci ; 106(4): 2667-2684, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870845

RESUMO

Sole hemorrhage and sole ulcers, referred to as sole lesions, are important causes of lameness in dairy cattle. We aimed to compare the serum metabolome of dairy cows that developed sole lesions in early lactation with that of cows that remained unaffected. We prospectively enrolled a cohort of 1,169 Holstein dairy cows from a single dairy herd and assessed animals at 4 time points: before calving, immediately after calving, early lactation, and late lactation. Sole lesions were recorded by veterinary surgeons at each time point, and serum samples were collected at the first 3 time points. Cases were defined by the presence of sole lesions in early lactation and further subdivided by whether sole lesions had been previously recorded; unaffected controls were randomly selected to match cases. Serum samples from a case-control subset of 228 animals were analyzed with proton nuclear magnetic resonance spectroscopy. Spectral signals, corresponding to 34 provisionally annotated metabolites and 51 unlabeled metabolites, were analyzed in subsets relating to time point, parity cohort, and sole lesion outcome. We used 3 analytic methods (partial least squares discriminant analysis, least absolute shrinkage and selection operator regression, and random forest) to determine the predictive capacity of the serum metabolome and identify informative metabolites. We applied bootstrapped selection stability, triangulation, and permutation to support the inference of variable selection. The average balanced accuracy of class prediction ranged from 50 to 62% depending on the subset. Across all 17 subsets, 20 variables had a high probability of being informative; those with the strongest evidence of being associated with sole lesions corresponded to phenylalanine and 4 unlabeled metabolites. We conclude that the serum metabolome, as characterized by proton nuclear magnetic resonance spectroscopy, does not appear able to predict sole lesion presence or future development of lesions. A small number of metabolites may be associated with sole lesions although, given the poor prediction accuracies, these metabolites are likely to explain only a small proportion of the differences between affected and unaffected animals. Future metabolomic studies may reveal underlying metabolic mechanisms of sole lesion etiopathogenesis in dairy cows; however, the experimental design and analysis need to effectively control for interanimal and extraneous sources of spectral variation.


Assuntos
Doenças dos Bovinos , Doenças do Pé , Casco e Garras , Animais , Bovinos , Feminino , Gravidez , Doenças dos Bovinos/etiologia , Doenças do Pé/veterinária , Lactação , Coxeadura Animal/etiologia , Espectroscopia de Ressonância Magnética , Metabolômica , Prótons , Estudos de Casos e Controles
8.
Genet Sel Evol ; 55(1): 16, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899300

RESUMO

BACKGROUND: Lameness in dairy cattle is primarily caused by foot lesions including the claw horn lesions (CHL) of sole haemorrhage (SH), sole ulcers (SU), and white line disease (WL). This study investigated the genetic architecture of the three CHL based on detailed animal phenotypes of CHL susceptibility and severity. Estimation of genetic parameters and breeding values, single-step genome-wide association analyses, and functional enrichment analyses were performed. RESULTS: The studied traits were under genetic control with a low to moderate heritability. Heritability estimates of SH and SU susceptibility on the liability scale were 0.29 and 0.35, respectively. Heritability of SH and SU severity were 0.12 and 0.07, respectively. Heritability of WL was relatively lower, indicating stronger environmental influence on the presence and development of WL than the other two CHL. Genetic correlations between SH and SU were high (0.98 for lesion susceptibility and 0.59 for lesion severity), whereas genetic correlations of SH and SU with WL also tended to be positive. Candidate quantitative trait loci (QTL) were identified for all CHL, including some on Bos taurus chromosome (BTA) 3 and 18 with potential pleiotropic effects associated with multiple foot lesion traits. A genomic window of 0.65 Mb on BTA3 explained 0.41, 0.50, 0.38, and 0.49% of the genetic variance for SH susceptibility, SH severity, WL susceptibility, and WL severity, respectively. Another window on BTA18 explained 0.66, 0.41, and 0.70% of the genetic variance for SH susceptibility, SU susceptibility, and SU severity, respectively. The candidate genomic regions associated with CHL harbour annotated genes that are linked to immune system function and inflammation responses, lipid metabolism, calcium ion activities, and neuronal excitability. CONCLUSIONS: The studied CHL are complex traits with a polygenic mode of inheritance. Most traits exhibited genetic variation suggesting that animal resistance to CHL can be improved with breeding. The CHL traits were positively correlated, which will facilitate genetic improvement for resistance to CHL as a whole. Candidate genomic regions associated with lesion susceptibility and severity of SH, SU, and WL provide insights into a global profile of the genetic background underlying CHL and inform genetic improvement programmes aiming at enhancing foot health in dairy cattle.


Assuntos
Doenças dos Bovinos , Casco e Garras , Bovinos , Animais , Doenças dos Bovinos/genética , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Locos de Características Quantitativas
9.
J Dairy Sci ; 106(3): 1874-1888, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710182

RESUMO

Sole hemorrhage and sole ulcers, referred to as sole lesions, are important causes of lameness in dairy cattle. The objective of this study was to estimate the genetic parameters of a novel trait reflecting how well cows recovered from sole lesions and the genetic correlation of this trait with overall susceptibility to sole lesions. A cohort of Holstein dairy cows was prospectively enrolled on 4 farms and assessed at 4 timepoints: before calving, immediately after calving, in early lactation, and in late lactation. At each timepoint, sole lesions were recorded at the claw level by veterinary surgeons and used to define 2 binary traits: (1) susceptibility to sole lesions-whether animals were affected with sole lesions at least once during the study or were unaffected at every assessment, and (2) sole lesion recovery-whether sole lesions healed between early and late lactation. Animals were genotyped and pedigree details extracted from the national database. Analyses were conducted with BLUPF90 software in a single-step framework; genetic parameters were estimated from animal threshold models using Gibbs sampling. The genetic correlation between both traits was approximated as the correlation between genomic estimated breeding values, adjusting for their reliabilities. A total of 2,025 animals were used to estimate the genetic parameters of sole lesion susceptibility; 44% of animals recorded a sole lesion at least once during the study period. The heritability of sole lesion susceptibility, on the liability scale, was 0.25 (95% highest density interval = 0.16-0.34). A total of 498 animals were used to estimate the genetic parameters of sole lesion recovery; 71% of animals had recovered between the early and late lactation assessments. The heritability of sole lesion recovery, on the liability scale, was 0.27 (95% highest density interval = 0.02-0.52). The approximate genetic correlation between each trait was -0.11 (95% confidence interval = -0.20 to -0.02). Our results indicate that recovery from sole lesions is heritable. If this finding is corroborated in further studies, it may be possible to use selective breeding to reduce the frequency of chronically lame cows. As sole lesion recovery appears to be weakly genetically related to sole lesion susceptibility, successful genetic improvement of sole lesion recovery would benefit from selection on this trait directly.


Assuntos
Doenças dos Bovinos , Casco e Garras , Feminino , Bovinos/genética , Animais , Doenças dos Bovinos/genética , Coxeadura Animal/genética , Lactação/genética , Genótipo
10.
J Dairy Sci ; 105(10): 8237-8256, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028347

RESUMO

The digital cushion is linked to the development of claw horn lesions (CHL) in dairy cattle. The objectives of this study were to (1) estimate genetic parameters for digital cushion thickness (DCT), (2) estimate the genetic correlation between DCT and CHL, and (3) identify candidate genes associated with DCT. A cohort of 2,352 Holstein dairy cows were prospectively enrolled on 4 farms and assessed at 4 time points: before calving, immediately after calving, in early lactation, and in late lactation. At each time point, CHL was recorded by veterinary surgeons, and ultrasonographic images of the digital cushion were stored and retrospectively measured at 2 anatomical locations. Animals were genotyped and pedigree details extracted from the national database. Genetic parameters were estimated following a single-step approach implemented in AIREMLF90. Four traits were analyzed: the 2 DCT measurements, sole lesions (sole hemorrhage and sole ulcers), and white line lesions. All traits were analyzed with univariate linear mixed models; bivariate models were fit to estimate the genetic correlation between traits within and between time points. Single-marker and window-based genome-wide association analyses of DCT traits were conducted at each time point; candidate genes were mapped near (<0.2 Mb) or within the genomic markers or windows with the largest effects. Heritability estimates of DCT ranged from 0.14 to 0.44 depending on the location of DCT measurement and assessment time point. The genetic correlation between DCT and sole lesions was generally negative, notably between DCT immediately after calving and sole lesions in early or late lactation, and between DCT in early or late lactation and sole lesion severity in early or late lactation. Digital cushion thickness was not genetically correlated with white line lesions. A polygenic background to DCT was found; genes associated with inflammation, fat metabolism, and bone development were mapped near or within the top markers and windows. The moderate heritability of DCT provides an opportunity to use selective breeding to change DCT in a population. The negative genetic correlation between DCT and sole lesions at different stages of production lends support to current hypotheses of sole lesion pathogenesis. Highlighted candidate genes provide information regarding the complex genetic background of DCT in Holstein cows, but further studies are needed to explore and corroborate these findings.


Assuntos
Doenças dos Bovinos , Doenças do Pé , Casco e Garras , Animais , Bovinos/genética , Doenças dos Bovinos/diagnóstico por imagem , Doenças dos Bovinos/genética , Feminino , Doenças do Pé/veterinária , Estudo de Associação Genômica Ampla/veterinária , Casco e Garras/diagnóstico por imagem , Casco e Garras/patologia , Humanos , Lactação/genética , Coxeadura Animal/epidemiologia , Estudos Retrospectivos
11.
Vet Rec ; 191(1): e1632, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468242

RESUMO

BACKGROUND: This study aimed to determine the association between the lameness advantage genetic index and four outcomes: sole haemorrhage (SH), sole ulcers (SU), white line lesions (WL), and lameness during mobility scoring. METHODS: We enrolled 2352 Holstein cows from four predominantly housed dairy herds in the UK. Cows were mobility scored and foot lesions recorded at four time points from before calving to late lactation. Cows were genotyped and genetic indexes were assigned to each cow following national genetic evaluations. Lameness records and genetic indexes were matched for 2107 cows. Four separate multivariable logistic regression models, which included farm and parity as covariables, were used to quantify the association between the lameness advantage index and whether animals were affected by SH, SU, WL, or lameness. RESULTS: The odds ratios (95% confidence intervals) for one-point increases in the lameness advantage index were 0.79 (0.72-0.86), 0.68 (0.59-0.78), 0.94 (0.84-1.04), and 0.82 (0.74-0.91) for SH, SU, WL, and lameness, respectively. The same trends were present when the sire's lameness advantage index was evaluated in place of the animal's own, although the strength of this association was generally weaker. CONCLUSION: The lameness advantage index is associated with SH, SU, and lameness, therefore selection on the lameness advantage index could be considered in herds aiming to reduce lameness. Where genomic testing of heifers is not conducted, sire lameness advantage index may still be effective to reduce SH and SU incidence.


Assuntos
Doenças dos Bovinos , Doenças do Pé , Casco e Garras , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Indústria de Laticínios , Feminino , Doenças do Pé/epidemiologia , Doenças do Pé/genética , Doenças do Pé/veterinária , Casco e Garras/patologia , Incidência , Lactação , Coxeadura Animal/epidemiologia , Coxeadura Animal/genética , Gravidez
12.
Vet Rec ; 190(10): e1387, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122435

RESUMO

BACKGROUND: The objective of this study was to investigate the association between (sub)clinical mastitis (CM) in the first 30 days in milk (DIM) and the presence of sole ulcers (SU) later in lactation. METHODS: Holstein cows and heifers were examined for presence of sole haemorrhage and SU before calving, in the first 14 days postcalving and in early lactation (after 30 DIM). CM episodes and somatic cell counts (SCC) measurements were obtained from farm records. Multivariable logistic regression was used for data analysis. RESULTS: Odds of SU in early lactation were 2.44 times greater (95% confidence interval [CI] 0.97-5.54) in cows that had CM in the first 30 DIM compared to cows that did not have CM in the first 30 DIM. When cows that had SU precalving or at the calving check were excluded from the dataset, an association of CM in the first 30 DIM with later presence of SU was no longer statistically significant but the same numeric trend still existed (odds ratio [OR] 2.25, 95% CI 0.81-5.34). The odds of SU in early lactation were 1.70 times greater in cows that had high SCC compared to cows that did not have high SCC in the first 100 DIM (95% CI 1.13-2.55). CONCLUSION: An association was found between CM in the first 30 DIM and presence of SU in early lactation (after 30 DIM). Elucidating the mechanism behind this relationship could improve our understanding of the aetiopathogenesis of both diseases and lead to new preventive strategies.


Assuntos
Mastite Bovina , Leite , Animais , Bovinos , Feminino , Humanos , Lactação , Mastite Bovina/epidemiologia , Estudos Prospectivos , Úlcera/veterinária
13.
Poult Sci ; 101(3): 101654, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007930

RESUMO

MHCY is a candidate region for influencing immune responses in chickens. MHCY contains multiple specialized, polymorphic MHC class I loci along with loci belonging to 4 additional gene families. In this study, MHCY haplotypes were tested for association with cecal colonization after Campylobacter jejuni infection of a backcross [(Line 61 × Line N) × Line N] population derived from 2 White Leghorn research lines, Line 61 and Line N, that were previously shown to exhibit heritable differences in colonization. Samples were obtained for 51 birds challenged with 108 CFU Campylobacter jejuni at 3 wk of age. Viable C. jejuni in the ceca were enumerated 5 d postinfection and counts were log-transformed for analysis. Birds were assigned to either low or high colonization groups based on the individual count being below or above the mean bacterial count for all birds. The mean bacterial count of the low infection group differed significantly from the high infection group. Sex and MHCB haplotype had similar distributions within the 2 groups. Overall, 7 MHCY haplotypes were found to be segregating. Two were significantly associated with C. jejuni colonization. MHCY Y18 was associated with low colonization (P = 3.00 × 10-5); whereas MHCY Y11a was associated with high colonization (P = 0.008). The MHCY haplotype impacted the mean bacterial count among all birds with MHCY Y18 having the lowest bacterial count compared with MHCY Y11a and all other MHCY (Y5, Y7, Y8, Y11b, and Y11c) haplotypes. These findings support further investigation of the contribution of chicken MHCY in resistance to Campylobacter colonization.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Ceco/microbiologia , Galinhas/genética , Galinhas/microbiologia , Haplótipos , Doenças das Aves Domésticas/microbiologia
15.
BMC Genomics ; 22(1): 411, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34082718

RESUMO

BACKGROUND: Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans and the handling or consumption of contaminated poultry meat is a key source of infection. Selective breeding of poultry that exhibit elevated resistance to Campylobacter is an attractive control strategy. Here we studied the global transcriptional response of inbred chicken lines that differ in resistance to C. jejuni colonisation at a key site of bacterial persistence. RESULTS: Three-week-old chickens of line 61 and N were inoculated orally with C. jejuni strain M1 and caecal contents and tonsils were sampled at 1 and 5 days post-infection. Caecal colonisation was significantly lower in line 61 compared to line N at 1 day post-infection, but not 5 days post-infection. RNA-Seq analysis of caecal tonsils of both lines revealed a limited response to C. jejuni infection compared to age-matched uninfected controls. In line N at days 1 and 5 post-infection, just 8 and 3 differentially expressed genes (DEGs) were detected (fold-change > 2 and false-discovery rate of < 0.05) relative to uninfected controls, respectively. In the relatively resistant line 61, a broader response to C. jejuni was observed, with 69 DEGs relating to immune regulation, cell signalling and metabolism at 1 day post-infection. However, by day 5 post-infection, no DEGs were detected. By far, the greatest number of DEGs were between uninfected birds of the two lines implying that differential resistance to C. jejuni is intrinsic. Of these genes, several Major Histocompatibility Complex class I-related genes (MHCIA1, MHCBL2 and MHCIY) and antimicrobial peptides (MUC2, AvBD10 and GZMA) were expressed to a greater extent in line N. Two genes within quantitative trait loci associated with C. jejuni colonisation were also more highly expressed in line N (ASIC4 and BZFP2). Quantitative reverse-transcriptase PCR analysis of a subset of transcripts confirmed the RNA-Seq results. CONCLUSIONS: Our data indicate a limited transcriptional response in the caecal tonsils of inbred chickens to intestinal colonisation by Campylobacter but identify a large number of differentially transcribed genes between lines 61 and N that may underlie variation in heritable resistance to C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/genética , Infecções por Campylobacter/veterinária , Campylobacter jejuni/genética , Ceco , Galinhas/genética , Perfilação da Expressão Gênica , Humanos , Doenças das Aves Domésticas/genética , Transcriptoma
16.
Sci Rep ; 11(1): 5589, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692400

RESUMO

Telomere length is predictive of adult health and survival across vertebrate species. However, we currently do not know whether such associations result from among-individual differences in telomere length determined genetically or by early-life environmental conditions, or from differences in the rate of telomere attrition over the course of life that might be affected by environmental conditions. Here, we measured relative leukocyte telomere length (RLTL) multiple times across the entire lifespan of dairy cattle in a research population that is closely monitored for health and milk production and where individuals are predominantly culled in response to health issues. Animals varied in their change in RLTL between subsequent measurements and RLTL shortened more during early life and following hotter summers which are known to cause heat stress in dairy cows. The average amount of telomere attrition calculated over multiple repeat samples of individuals predicted a shorter productive lifespan, suggesting a link between telomere loss and health. TL attrition was a better predictor of when an animal was culled than their average TL or the previously for this population reported significant TL at the age of 1 year. Our present results support the hypothesis that TL is a flexible trait that is affected by environmental factors and that telomere attrition is linked to animal health and survival traits. Change in telomere length may represent a useful biomarker in animal welfare studies.


Assuntos
Leucócitos/metabolismo , Longevidade , Encurtamento do Telômero , Telômero/metabolismo , Tempo (Meteorologia) , Animais , Bovinos , Feminino
17.
Sci Rep ; 11(1): 1623, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436657

RESUMO

Campylobacter is the leading cause of bacterial foodborne gastroenteritis worldwide. Handling or consumption of contaminated poultry meat is a key risk factor for human campylobacteriosis. One potential control strategy is to select poultry with increased resistance to Campylobacter. We associated high-density genome-wide genotypes (600K single nucleotide polymorphisms) of 3000 commercial broilers with Campylobacter load in their caeca. Trait heritability was modest but significant (h2 = 0.11 ± 0.03). Results confirmed quantitative trait loci (QTL) on chromosomes 14 and 16 previously identified in inbred chicken lines, and detected two additional QTLs on chromosomes 19 and 26. RNA-Seq analysis of broilers at the extremes of colonisation phenotype identified differentially transcribed genes within the QTL on chromosome 16 and proximal to the major histocompatibility complex (MHC) locus. We identified strong cis-QTLs located within MHC suggesting the presence of cis-acting variation in MHC class I and II and BG genes. Pathway and network analyses implicated cooperative functional pathways and networks in colonisation, including those related to antigen presentation, innate and adaptive immune responses, calcium, and renin-angiotensin signalling. While co-selection for enhanced resistance and other breeding goals is feasible, the frequency of resistance-associated alleles was high in the population studied and non-genetic factors significantly influenced Campylobacter colonisation.


Assuntos
Campylobacter/fisiologia , Galinhas/genética , Resistência à Doença/genética , Característica Quantitativa Herdável , Transcriptoma , Imunidade Adaptativa/genética , Animais , Estudo de Associação Genômica Ampla , Genótipo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Inata/genética , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/microbiologia
18.
Front Genet ; 11: 543890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193617

RESUMO

Poultry play an important role in the agriculture of many African countries. The majority of chickens in sub-Saharan Africa are indigenous, raised in villages under semi-scavenging conditions. Vaccinations and biosecurity measures rarely apply, and infectious diseases remain a major cause of mortality and reduced productivity. Genomic selection for disease resistance offers a potentially sustainable solution but this requires sufficient numbers of individual birds with genomic and phenotypic data, which is often a challenge to collect in the small populations of indigenous chicken ecotypes. The use of information across-ecotypes presents an attractive possibility to increase the relevant numbers and the accuracy of genomic selection. In this study, we performed a joint analysis of two distinct Ethiopian indigenous chicken ecotypes to investigate the genomic architecture of important health and productivity traits and explore the feasibility of conducting genomic selection across-ecotype. Phenotypic traits considered were antibody response to Infectious Bursal Disease (IBDV), Marek's Disease (MDV), Fowl Cholera (PM) and Fowl Typhoid (SG), resistance to Eimeria and cestode parasitism, and productivity [body weight and body condition score (BCS)]. Combined data from the two chicken ecotypes, Horro (n = 384) and Jarso (n = 376), were jointly analyzed for genetic parameter estimation, genome-wide association studies (GWAS), genomic breeding value (GEBVs) calculation, genomic predictions, whole-genome sequencing (WGS), and pathways analyses. Estimates of across-ecotype heritability were significant and moderate in magnitude (0.22-0.47) for all traits except for SG and BCS. GWAS identified several significant genomic associations with health and productivity traits. The WGS analysis revealed putative candidate genes and mutations for IBDV (TOLLIP, ANGPTL5, BCL9, THEMIS2), MDV (GRM7), SG (MAP3K21), Eimeria (TOM1L1) and cestodes (TNFAIP1, ATG9A, NOS2) parasitism, which warrant further investigation. Reliability of GEBVs increased compared to within-ecotype calculations but accuracy of genomic prediction did not, probably because the genetic distance between the two ecotypes offset the benefit from increased sample size. However, for some traits genomic prediction was only feasible in across-ecotype analysis. Our results generally underpin the potential of genomic selection to enhance health and productivity across-ecotypes. Future studies should establish the required minimum sample size and genetic similarity between ecotypes to ensure accurate joint genomic selection.

19.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31980428

RESUMO

Campylobacteriosis is the leading foodborne bacterial diarrheal illness in many countries, with up to 80% of human cases attributed to the avian reservoir. The only control strategies currently available are stringent on-farm biosecurity and carcass treatments. Heritable differences in the resistance of chicken lines to Campylobacter colonization have been reported and resistance-associated quantitative trait loci are emerging, although their impact on colonization appears modest. Recent studies indicated a protective role of the microbiota against colonization by Campylobacter in chickens. Furthermore, in murine models, differences in resistance to bacterial infections can be partially transferred between lines by transplantation of gut microbiota. In this study, we investigated whether heritable differences in colonization of inbred chicken lines by Campylobacter jejuni are associated with differences in cecal microbiota. We performed homologous and heterologous cecal microbiota transplants between line 61 (resistant) and line N (susceptible) by orally administering cecal contents collected from 3-week-old donors to day-of-hatch chicks. Recipient birds were challenged (day 21) with C. jejuni 11168H. In birds given homologous microbiota, the differential resistance of lines to C. jejuni colonization was reproduced. Contrary to our hypothesis, transfer of cecal microbiota from line 61 to line N significantly increased C. jejuni colonization. No significant difference in the overall composition of the cecal microbial communities of the two lines was identified, although line-specific differences for specific operational taxonomic units were identified. Our data suggest that while heritable differences in avian resistance to Campylobacter colonization exist, these are not explained by significant variation in the cecal microbiota.IMPORTANCECampylobacter is a leading cause of foodborne diarrheal disease worldwide. Poultry are a key source of human infections, but there are currently few effective measures against Campylobacter in poultry during production. One option to control Campylobacter may be to alter the composition of microbial communities in the avian intestines by introducing beneficial bacteria, which exclude the harmful ones. We previously described two inbred chicken lines which differ in resistance to intestinal colonization by Campylobacter Here, we investigated the composition of the microbial communities in the gut of these lines and whether transferring gut bacteria between the resistant and susceptible lines alters their resistance to Campylobacter No major differences in microbial populations were found, and resistance or susceptibility to colonization was not conferred by transferring gut bacteria between lines. The data suggest that gut microbiota did not play a role in resistance to Campylobacter colonization, at least in the lines used.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Ceco/microbiologia , Galinhas , Resistência à Doença , Microbioma Gastrointestinal , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Campylobacter/microbiologia , Galinhas/genética , Feminino , Endogamia , Masculino
20.
Front Genet ; 10: 1032, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803225

RESUMO

There is increasing recognition that the underlying genetic variation contributing to complex traits influences transcriptional regulation and can be detected at a population level as expression quantitative trait loci. At the level of an individual, allelic variation in transcriptional regulation of individual genes can be detected by measuring allele-specific expression in RNAseq data. We reasoned that extreme variants in gene expression could be identified by analysis of inbred progeny with shared grandparents. Commercial chickens have been intensively selected for production traits. Selection is associated with large blocks of linkage disequilibrium with considerable potential for co-selection of closely linked "hitch-hiker alleles" affecting traits unrelated to the feature being selected, such as immune function, with potential impact on the productivity and welfare of the animals. To test this hypothesis that there is extreme allelic variation in immune-associated genes we sequenced a founder population of commercial broiler and layer birds. These birds clearly segregated genetically based upon breed type. Each genome contained numerous candidate null mutations, protein-coding variants predicted to be deleterious and extensive non-coding polymorphism. We mated selected broiler-layer pairs then generated cohorts of F2 birds by sibling mating of the F1 generation. Despite the predicted prevalence of deleterious coding variation in the genomic sequence of the founders, clear detrimental impacts of inbreeding on survival and post-hatch development were detected in only one F2 sibship of 15. There was no effect on circulating leukocyte populations in hatchlings. In selected F2 sibships we performed RNAseq analysis of the spleen and isolated bone marrow-derived macrophages (with and without lipopolysaccharide stimulation). The results confirm the predicted emergence of very large differences in expression of individual genes and sets of genes. Network analysis of the results identified clusters of co-expressed genes that vary between individuals and suggested the existence of trans-acting variation in the expression in macrophages of the interferon response factor family that distinguishes the parental broiler and layer birds and influences the global response to lipopolysaccharide. This study shows that the impact of inbreeding on immune cell gene expression can be substantial at the transcriptional level, and potentially opens a route to accelerate selection using specific alleles known to be associated with desirable expression levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA