Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400105, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452401

RESUMO

Wide bandgap (WBG) perovskite can construct tandem cells with narrow bandgap solar cells by adjusting the band gap to overcome the Shockley-Queisser limitation of single junction perovskite solar cells (PSCs). However, WBG perovskites still suffer from severe nonradiative carrier recombination and large open-circuit voltage loss. Here, this work uses an in situ photoluminescence (PL) measurement to monitor the intermediate phase evolution and crystallization process via blade coating. This work reports a strategy to fabricate efficient and stable WBG perovskite solar cells through doping a long carbon chain molecule octane-1,8-diamine dihydroiodide (ODADI). It is found that ODADI doping not only suppresses intermediate phases but also promote the crystallization of perovskite and passivate defects in blade coated 1.67 eV WBG FA0.7 Cs0.25 MA0.05 Pb(I0.8 Br0.2 )3 perovskite films. As a result, the champion single junction inverted PSCs deliver the efficiencies of 22.06% and 19.63% for the active area of 0.07 and 1.02 cm2 , respectively, which are the highest power conversion efficiencies (PCEs) in WBG PSCs by blade coating. The unencapsulated device demonstrates excellent stability in air, which maintains its initial efficiency at the maximum power points under constant AM 1.5G illumination in open air for nearly 500 h. The resulting semitransparent WBG device delivers a high PCE of 20.06%, and the 4-terminal all-perovskite tandem device delivers a PCE of 28.35%.

2.
Nat Commun ; 15(1): 2324, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485961

RESUMO

Mixed tin-lead perovskite solar cells have driven a lot of passion for research because of their vital role in all-perovskite tandem solar cells, which hold the potential for achieving higher efficiencies compared to single-junction counterparts. However, the pronounced disparity in crystallization processes between tin-based perovskites and lead-based perovskites, coupled with the easy Sn2+ oxidation, has long been a dominant factor contributing to high defect densities. In this study, we propose a multidimensional strategy to achieve efficient tin-lead perovskite solar cells by employing a functional N-(carboxypheny)guanidine hydrochloride molecule. The tailored N-(carboxypheny)guanidine hydrochloride molecule plays a pivotal role in manipulating the crystallization and grain growth of tin-lead perovskites, while also serving as a preservative to effectively inhibit Sn2+ oxidation, owing to the strong binding between N-(carboxypheny)guanidine hydrochloride and tin (II) iodide and the elevated energy barriers for oxidation. Consequently, single-junction tin-lead cells exhibit a stabilized power conversion efficiency of 23.11% and can maintain 97.45% of their initial value even after 3500 h of shelf storage in an inert atmosphere without encapsulation. We further integrate tin-lead perovskites into two-terminal monolithic all-perovskite tandem cells, delivering a certified efficiency of 27.35%.

3.
Adv Mater ; 36(1): e2307987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956304

RESUMO

Wide-bandgap (WBG) perovskite solar cells have attracted considerable interest for their potential applications in tandem solar cells. However, the predominant obstacles impeding their widespread adoption are substantial open-circuit voltage (VOC ) deficit and severe photo-induced halide segregation. To tackle these challenges, a crystal orientation regulation strategy by introducing dodecyl-benzene-sulfonic-acid as an additive in perovskite precursors is proposed. This method significantly promotes the desired crystal orientation, passivates defects, and mitigates photo-induced halide phase segregation in perovskite films, leading to substantially reduced nonradiative recombination, minimized VOC deficits, and enhanced operational stability of the devices. The resulting 1.66 eV bandgap methylamine-free perovskite solar cells achieve a remarkable power conversion efficiency (PCE) of 22.40% (certified at 21.97%), with the smallest VOC deficit recorded at 0.39 V. Furthermore, the fabricated semitransparent WBG devices exhibit a competitive PCE of 20.13%. Consequently, four-terminal tandem cells comprising WBG perovskite top cells and 1.25 eV bandgap perovskite bottom cells showcase an impressive PCE of 28.06% (stabilized 27.92%), demonstrating great potential for efficient multijunction tandem solar cell applications.

4.
Nature ; 624(7990): 69-73, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938775

RESUMO

All-perovskite tandem solar cells hold great promise in surpassing the Shockley-Queisser limit for single-junction solar cells1-3. However, the practical use of these cells is currently hampered by the subpar performance and stability issues associated with mixed tin-lead (Sn-Pb) narrow-bandgap perovskite subcells in all-perovskite tandems4-7. In this study, we focus on the narrow-bandgap subcells and develop an all-in-one doping strategy for them. We introduce aspartate hydrochloride (AspCl) into both the bottom poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) and bulk perovskite layers, followed by another AspCl posttreatment. We show that a single AspCl additive can effectively passivate defects, reduce Sn4+ impurities and shift the Fermi energy level. Additionally, the strong molecular bonding of AspCl-Sn/Pb iodide and AspCl-AspCl can strengthen the structure and thereby improve the stability of Sn-Pb perovskites. Ultimately, the implementation of AspCl doping in Sn-Pb perovskite solar cells yielded power conversion efficiencies of 22.46% for single-junction cells and 27.84% (27.62% stabilized and 27.34% certified) for tandems with 95% retention after being stored in an N2-filled glovebox for 2,000 h. These results suggest that all-in-one AspCl doping is a favourable strategy for enhancing the efficiency and stability of single-junction Sn-Pb perovskite solar cells and their tandems.

5.
Adv Mater ; 35(32): e2301125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247429

RESUMO

Narrow-bandgap (NBG) mixed tin/lead-based (Sn-Pb) perovskite solar cells (PSCs) have attracted extensive attention for use in tandem solar cells. However, they are still plagued by serious carrier recombination due to inferior film properties resulting from the alloying of Sn with Pb elements, which leads to p-type self-doping behaviors. This work reports an effective tin oxide (SnOx ) doping strategy to produce high-quality Sn-Pb perovskite films for utilization in efficient single-junction and tandem PSCs. SnOx can be naturally oxidized from tin diiodide raw powders and successfully incorporated into Sn-Pb perovskite films. Consequently, Sn-Pb perovskite films doped with SnOx exhibit dramatically improved morphology, crystallization, absorption, and more interestingly, upward-shifted Fermi levels. The resulting narrow-bandgap Sn-Pb PSCs with natural SnOx doping have considerably reduced carrier recombination, therefore delivering a maximum power conversion efficiency (PCE) of 22.16% for single-junction cells and a remarkable PCE of 26.01% (with a steady-state efficiency of 25.33%) for two-terminal all-perovskite tandem cells. This work introduces a facile doping strategy for the manufacture of efficient single-junction narrow-bandgap PSCs and their tandem solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA