Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Med Mushrooms ; 26(4): 9-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523446

RESUMO

To assess the strain resources and address production challenges in Ganoderma cultivation. 150 Ganoderma strains were collected from 13 provinces in China. A comparative analysis of agronomic traits and effective components was conducted. Among the 150 strains, key agronomic traits measured were: average stipe diameter (15.92 mm), average stipe length (37.46 mm), average cap horizontal diameter (94.97 mm), average cap vertical diameter (64.21 mm), average cap thickness (15.22 mm), and average fruiting body weight (14.30 g). Based on these agronomic traits, four promising strains, namely, L08, L12, Z21, and Z39, were recommended for further cultivation and breeding. The average crude polysaccharide content ranged from 0.048% to 0.977%, and triterpenoids ranged from 0.804% to 2.010%. In addition, 73 triterpenoid compounds were identified, constituting 47.1% of the total compounds. Using a distance discrimination method, the types, and relative contents of triterpenoid compounds in 150 Ganoderma strains were classified, achieving 98% accuracy in G. lingzhi identification. The 16 triterpenoid components used for G. lingzhi identification included oleanolic acid, ursolic acid, 3ß-acetoxyergosta-7,22-dien-5α-ol, ganoderic acid DM, ganoderiol B, ganorderol A, ganoderic acid GS-1, tsugaric acid A, ganoderic acid GS-2, ganoderenic acid D, ganoderic acid Mf, ganoderic acid A, ganoderic acid K, ganoderic acid V, ganoderic acid G, and leucocontextin J. This study provides valuable insights for exploring and utilizing Ganoderma resources and for the development of new varieties.


Assuntos
Agaricales , Agaricus , Antineoplásicos , Ganoderma , Reishi , Triterpenos , Triterpenos/análise , China
2.
Gene ; 893: 147938, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38381508

RESUMO

This study aimed to investigate the species diversity and genetic differentiation of the genome of the main cultivated strains of Ganoderma in China. Population genomics analysis was conducted based on 150 cultivated strains of Ganoderma collected nationwide. The results indicated that the main species currently cultivated in China were Ganoderma sichuanense and Ganoderma lucidum, with a minor proportion of Ganoderma sessile, Ganoderma weberianum, Ganoderma sinense, Ganoderma gibbosum and Ganoderma australe. A total of 336,506 high-quality single nucleotide polymorphism (SNP) loci were obtained through population evolution analysis. The Fst values were calculated using a 5-kb sliding window, which ranged from 0.11 to 0.74. This suggests varying degrees of genetic differentiation between populations and genetic exchange among varieties. On this basis, the genes related to the stipe length, cap color and branch phenotypes of Ganoderma were excavated, and the region with the top 1% ZFst value region was used as a candidate region. A total of 137, 270 and 222 candidate genes were identified in the aforementioned 3 phenotypes, respectively. Gene annotation revealed that genes associated with stipe length were mainly related to cell division and differentiation, including proteins such as Nse4 protein and DIM1 protein. The genes related to Ganoderma red color were mainly related to the metabolism of tryptophan and flavonoids. The genes related to the branch were mainly related to cytokinin synthesis, ABC transporter and cytochrome P450. This study provided 150 valuable genome resequencing data in assessing the diversity and genetic differentiation of Ganoderma and laid a foundation for agronomic trait analysis and the development of new varieties of Ganoderma.


Assuntos
Ganoderma , Genética Populacional , Deriva Genética , Ganoderma/genética , China
3.
BMC Biotechnol ; 20(1): 42, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819342

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

4.
BMC Biotechnol ; 19(1): 9, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691438

RESUMO

BACKGROUND: Recent innovation in the field of genome engineering encompasses numerous levels of plant genome engineering which attract the substantial excitement of plant biologist worldwide. RNA-guided CRISPR Cas9 system has appeared a promising tool in site-directed mutagenesis due to its innovative utilization in different branches of biology. CRISPR-Cas9 nuclease system have supersedes all previously existed strategies and their associated pitfalls encountered with site-specific mutagenesis. RESULTS: Here we demonstrated an efficient sequence specific integration/mutation of FAD2-2 gene in soybean using CRISPR-Cas9 nuclease system. A single guided RNA sequence was designed with the help of a number of bioinformatics tools aimed to target distinct sites of FAD2-2 loci in soybean. The binary vector (pCas9-AtU6-sgRNA) has been successfully transformed into soybean cotyledon using Agrobacterium tumafacien. Taken together our findings complies soybean transgenic mutants subjected to targeted mutation were surprisingly detected in our target gene. Furthermore, the detection of Cas9 gene, BAR gene, and NOS terminator were carried out respectively. Southern blot analysis confirmed the stable transformation of Cas9 gene into soybean. Real time expression with qRT-PCR and Sanger sequencing analysis confirmed the efficient CRISPR-Cas9/sgRNA induced mutation within the target sequence of FAD2-2 loci. The integration of FAD2-2 target region in the form of substitution, deletions and insertions were achieved with notably high frequency and rare off-target mutagenesis. CONCLUSION: High frequent mutation efficiency was recorded as 21% out of all transgenic soybean plants subjected to targeted mutagenesis. Furthermore, Near-infrared spectroscopy (NIR) indicates the entire fatty acid profiling obtained from the mutants seeds of soybean. A considerable modulation in oleic acid content up to (65.58%) whereas the least level of linoleic acid is (16.08%) were recorded. Based on these finding CRISPR-Cas9 system can possibly sum up recent development and future challenges in producing agronomically important crops.


Assuntos
Sistemas CRISPR-Cas , Ácidos Graxos Dessaturases/genética , Edição de Genes/métodos , Glycine max/genética , Mutagênese Sítio-Dirigida , Genes de Plantas/genética , Mutação , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA