Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 204, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172118

RESUMO

Generating ion-photon entanglement is a crucial step for scalable trapped-ion quantum networks. To avoid the crosstalk on memory qubits carrying quantum information, it is common to use a different ion species for ion-photon entanglement generation such that the scattered photons are far off-resonant for the memory qubits. However, such a dual-species scheme can be subject to inefficient sympathetic cooling due to the mass mismatch of the ions. Here we demonstrate a trapped-ion quantum network node in the dual-type qubit scheme where two types of qubits are encoded in the S and F hyperfine structure levels of 171Yb+ ions. We generate ion photon entanglement for the S-qubit in a typical timescale of hundreds of milliseconds, and verify its small crosstalk on a nearby F-qubit with coherence time above seconds. Our work demonstrates an enabling function of the dual-type qubit scheme for scalable quantum networks.

2.
Phys Rev Lett ; 124(24): 240504, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639803

RESUMO

The use of multiplexed atomic quantum memories (MAQM) can significantly enhance the efficiency to establish entanglement in a quantum network. In the previous experiments, individual elements of a quantum network, such as the generation, storage, and transmission of quantum entanglement have been demonstrated separately. Here we report an experiment to show the compatibility and integration of these basic operations. Specifically, we generate photon-atom entanglement from any chosen pair of memory cells in a 6×5 MAQM, convert the spin-wave to time-bin photonic excitation after a controllable storage time, and then store and retrieve the photon in a second MAQM for another controllable storage time. The preservation of quantum information in this process is verified by measuring the state fidelity. We also demonstrate that higher dimension quantum states can be transferred between the two distant MAQMs.

3.
Nat Commun ; 8: 15359, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480891

RESUMO

To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.

4.
Cell Death Dis ; 7: e2089, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26866270

RESUMO

The pseudokinase mixed lineage kinase domain-like protein (MLKL) is a key component of tumor necrosis factor (TNF)-induced necroptosis and plays a crucial role in necroptosis execution. However, the mechanisms that control MLKL activity are not completely understood. Here, we identify the molecular chaperone Hsp90 as a novel MLKL-interacting protein. We show that Hsp90 associates with MLKL and is required for MLKL stability. Moreover, we find that Hsp90 also regulates the stability of the upstream RIP3 kinase. Interference with Hsp90 function with the 17AAG inhibitor destabilizes MLKL and RIP3, resulting in their degradation by the proteasome pathway. Furthermore, we find that Hsp90 is required for TNF-stimulated necrosome assembly. Disruption of Hsp90 function prevents necrosome formation and strongly reduces MLKL phosphorylation and inhibits TNF-induced necroptosis. Consistent with a positive role of Hsp90 in necroptosis, coexpression of Hsp90 increases MLKL oligomerization and plasma membrane translocation and enhances MLKL-mediated necroptosis. Our findings demonstrate that an efficient necrotic response requires a functional Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/fisiologia , Estabilidade Enzimática , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Humanos , Necrose/metabolismo , Necrose/patologia , Fosforilação , Transdução de Sinais , Transfecção , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA