Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Domest Anim Endocrinol ; 88: 106849, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38608396

RESUMO

Gestational diet manipulation can lead to inadequate fetal nutrient supply resulting in low birth weight, limited postnatal growth, and consequently, reduced reproductive performance in the progeny. However, effects of short-term maternal pre-conceptional dietary manipulation on postnatal growth and reproductive parameters of male offspring in large animals remains unexplored. To determine these consequences, female crossbred (Polypay x Dorset) sheep were allocated to three groups (n = 33/group) of dietary manipulation for 21 days prior to mating under the following conditions: (1) control at 100 % of maintenance energy requirements (40 Kcal of metabolizable energy/kg body weight [BW]), (2) undernutrition (UN) at 50 % of Control intake, and (3) overnutrition (ON) at 200 % of maintenance energy. Singleton ram lambs (UN:9; C:12; ON:6) were monitored from birth until 8 months of age, including birth weight, weekly weights, weight gain, body mass index (BMI), and circulating testosterone. After weaning, monthly scrotal circumference and subcutaneous fat depth were measured. Semen morphology and motility were evaluated at 7 and 8 months of age. Birth weight, weight gain, and BMI at birth and weaning were not significantly different among nutritional treatments. None of the pre-conceptional diets affected body weight change from weaning until 36 weeks of age, BMI, fat depth, or scrotal circumference across the experiment. A sustained rise in plasma testosterone concentrations was detected when ram lambs were, on average, 82 days old and 37 kg. Both testosterone concentrations and scrotal circumference were positively correlated to body weight regardless of treatment group. In addition, seminal parameters did not differ among treatments, but a transient increase in plasma testosterone at 18 weeks of age was observed in ON ram lambs compared to control rams. In conclusion, birth weight, growth indices, and seminal parameters in singleton rams are resilient features in the progeny upon maternal pre-conceptional dietary manipulation in sheep.

2.
J Comput Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622788

RESUMO

We present a comprehensive investigation of the electronic properties of fluorinated monolayer violet phosphorus using first-principles calculations. Our results reveal a strong dependence of the electronic properties on the different fluorine coverages of fluorination. As the fluorine coverage increases, monolayer violet phosphorus undergoes a significant transition from a wide direct bandgap semiconductor to a narrow indirect bandgap semiconductor. Moreover, both semi-fluorinated and fully fluorinated monolayer violet phosphorus exhibit advantageous semiconducting characteristics, with a tunable bandgap of 0.50 ~ 1.04 eV under biaxial strain ranging from -6% to 6%. Notably, the fully fluorinated monolayer violet phosphorus demonstrates a higher coefficient of light absorption within the visible range. Therefore, our findings highlight the tunability of monolayer violet phosphorus properties through the absorption of various fluorine coverages, providing valuable insights for the design and development of novel semiconductor devices based on this material.

3.
Environ Health Perspect ; 132(4): 47009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630605

RESUMO

BACKGROUND: Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE: We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS: Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng/ml). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS: Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION: TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.


Assuntos
Compostos Orgânicos de Estanho , Células Tecais , Compostos de Trialquitina , Feminino , Humanos , Animais , Ovinos , Camundongos , Células Tecais/metabolismo , Compostos de Trialquitina/metabolismo , Compostos de Trialquitina/farmacologia , Lipídeos/farmacologia , Citocinas/metabolismo
4.
Phys Chem Chem Phys ; 26(11): 8945-8951, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436414

RESUMO

Two-dimensional (2D) valley materials are promising materials for writing and storing information. The search for 2D materials with large valley splitting is essential for the development of spintronics and valley electronics. In this study, we theoretically design 2D W2NSCl MXenes with large valley splitting based on first-principle calculations. Due to the strong spin-orbit coupling (SOC) and the broken inversion symmetry, the W2NSCl monolayer exhibits valley splitting values of 491 meV and 83 meV at K/K' of the valence and conduction bands, respectively. The valley splitting of W2NSCl is robust to biaxial strain. Because of the broken mirror symmetry of W2NSCl, there is a Rashba effect at Γ with a Rashba parameter of 1.019 V Å. Based on the maximum localization of the Wannier function, we found the non-zero Berry curvature at K/K'. Furthermore, the non-zero Berry curvature at the K/K' valley increases monotonically with an external strain from -4% to 4%. Our finding shows that W2NSCl is a candidate material for valley electronics and spintronics applications.

5.
Adv Sci (Weinh) ; 11(17): e2307034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353386

RESUMO

Exchange bias is extensively studied and widely utilized in spintronic devices, such as spin valves and magnetic tunnel junctions. 2D van der Waals (vdW) magnets, with high-quality interfaces in heterostructures, provide an excellent platform for investigating the exchange bias effect. To date, intrinsic modulation of exchange bias, for instance, via precise manipulation of the magnetic phases of the antiferromagnetic layer, is yet to be fully reached, owing partly to the large exchange fields of traditional bulk antiferromagnets. Herein, motivated by the low-field spin-flop transition of a 2D antiferromagnet, CrPS4, exchange bias is explored by modulating the antiferromagnetic spin-flop phase transition in all-vdW magnetic heterostructures. The results demonstrate that undergoing the spin-flop transition during the field cooling process, the A-type antiferromagnetic ground state of CrPS4 turns into a canted antiferromagnetic one, therefore, it reduces the interfacial magnetic coupling and suppresses the exchange bias. Via conducting different cooling fields, one can select the exchange bias effect switching among the "ON", "depressed", and "OFF" states determined by the spin flop of CrPS4. This work provides an approach to intrinsically modulate the exchange bias in all-vdW heterostructures and paves new avenues to design and manipulate 2D spintronic devices.

6.
BMC Genomics ; 25(1): 145, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321406

RESUMO

BACKGROUND: Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS: The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION: Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.


Assuntos
Cyprinidae , Raios Ultravioleta , Animais , Tibet , China , Cyprinidae/genética , Análise de Sequência de DNA
7.
Small Methods ; 8(2): e2300397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37204077

RESUMO

Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.

8.
Methods Mol Biol ; 2728: 223-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38019404

RESUMO

To improve our understanding of human placental function and placental cell responses to pregnancy stressors, the development of in vitro models that better recapitulate the in vivo placental microenvironment is needed. Here, we describe a three-dimensional (3D) silicone polymer polydimethylsiloxane (PDMS) microfluidic platform for modeling human trophoblast invasion recreating a placental heterocellular microenvironment. This platform allows the formation of a cellular barrier establishing a chemical gradient and real-time evaluation of trophoblast cell invasion and heterocellular cell-to-cell interactions.


Assuntos
Placenta , Trofoblastos , Gravidez , Humanos , Feminino , Microfluídica , Comunicação Celular , Polímeros
9.
Opt Express ; 31(25): 41072-41082, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087515

RESUMO

Multiple nonlinear effects with second-harmonic (SH) generation and optical bistability (OB) are highly desired but rather rare due to insufficient intrinsic nonlinearity in most nonlinear media. Here, a nonlinear microcavity coupled to a metallic nanoparticle (MNP) is suggested to realize the bistable SH generation. When two counterpropagating driving fields are injected into the cavity, a traditional SH pathway is constructed via the two-photon process of fundamental-harmonic (FH) photons. In addition, we report the coexistence between the SH and OB effects under the condition that the strong excitation and the detuning management for the driving fields boost system nonlinear responses. In the presence of a control field toward the MNP, our calculation finds that the traditional and plasmon-induced SH pathways in the present system allow enhancing the SH conversion efficiency and reducing the OB thresholds simultaneously. With the control field intensity increasing, a linear growth rate for the SH efficiency maximum is achieved. Furthermore, the relative phase between the driving and control fields has profound effects on modulating the bistable SH efficiency, the bistable interval and the thresholds.

10.
J Phys Chem A ; 127(48): 10189-10196, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38011598

RESUMO

A computational design of linearly extended multiple resonance (MR)-type BN molecules based on DABNA-1 is proposed herein in the quest to find potential candidates that exhibit a negative singlet-triplet gap (ΔEST) and a large oscillator strength value. The impact of a proper account of the electron correlation in the lowest singlet and triplet excited states is systematically investigated by using double-hybrid functionals within the TD-DFT framework, as well as wavefunction-based methods (EOM-CCSD and SCS-CC2), since this contribution plays an essential role in driving the magnitude of the ΔEST in MR-TADF and inverted singlet-triplet gap compounds. Our results point out a gradual reduction of the ΔEST gap with respect to the increasing sum of the number of B and N atoms, reaching negative ΔEST values for some molecules as a function of their size. The double-hybrid functionals reproduce the gap with only slight deviation compared to available experimental data for DABNA-1, ν-DABNA, and mDBCz and nicely agree with high-level quantum mechanical methods (e.g., EOM-CCSD and SCS-CC2). Larger oscillator strengths are found compared to the azaphenalene-type molecules, also exhibiting the inversion of their singlet and triplet excited states. We hope this study can serve as a motivation for further design of the molecules showing negative ΔEST based on boron- and nitrogen-doped polyaromatic hydrocarbons.

11.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37837120

RESUMO

The wireless communication system is used to provide dispatching, control, communication and other services for rail transit operations. In practice, interference from other wireless communication systems will affect the normal operation of trains, so it is an urgent problem to study the interference detection algorithms for rail transit applications. In this paper, the fourth-order cyclic cumulant (FOCC) of signals with different modulation modes is analyzed for the narrow-band wireless communications system of rail transit. Based on the analysis results, an adjacent-frequency interference detection algorithm is proposed according to the FOCC of the received signal within the predetermined cyclic frequency range. To detect interference with the same carrier frequency, a same-frequency interference detection algorithm using the relationship between the FOCC and the received power is proposed. The performance of the proposed detection algorithms in terms of correct rate and computational complexity is analyzed and compared with the traditional second-order statistical methods. Simulation results show that when an interference signal coexists with the expected signal, the correct rates of the adjacent-frequency and the same-frequency interference detection algorithms are greater than 90% when the signal-to-noise ratio (SNR) is higher than 2 dB and -4 dB, respectively. Under the practical rail transit wireless channel with multipath propagation and the Doppler effect, the correct rates of the adjacent-frequency and the same-frequency interference detection algorithms are greater than 90% when the SNR is higher than 3 dB and 7 dB, respectively. Compared with the existing second-order statistical methods, the proposed method can detect both the adjacent-frequency and the same-frequency interference when the interference signals coexist with the expected signal. Although the computational complexity of the proposed method is increased, it is acceptable in the application of rail transit wireless communication interference detection.

12.
iScience ; 26(9): 107584, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664598

RESUMO

The emergence of two-dimensional (2D) van der Waals magnets provides an exciting platform for exploring magnetism in the monolayer limit. Exotic quantum phenomena and significant potential for spintronic applications are demonstrated in 2D magnetic crystals and heterostructures, which offer unprecedented possibilities in advanced formation technology with low power and high efficiency. In this review, we summarize recent advances in 2D van der Waals magnetic crystals. We focus mainly on van der Waals materials of truly 2D nature with intrinsic magnetism. The detection methods of 2D magnetic materials are first introduced in detail. Subsequently, the effective strategies to modulate the magnetic behavior of 2D magnets (e.g., Curie temperature, magnetic anisotropy, magnetic exchange interaction) are presented. Then, we list the applications of 2D magnets in the spintronic devices. We also highlight current challenges and broad space for the development of 2D magnets in further studies.

13.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762014

RESUMO

Forkhead box H1 (FoxH1) is a sexually dimorphic gene in Oreochromis niloticus, Oplegnathus fasciatus, and Acanthopagrus latus, indicating that it is essential for gonadal development. In the present study, the molecular characteristics and potential function of FoxH1 and the activation of the cyp19a1a promoter in vitro were evaluated in Monopterus albus. The levels of foxh1 in the ovaries were three times higher than those in the testes and were regulated by gonadotropins (Follicle-Stimulating Hormone and Human Chorionic Gonadotropin). FoxH1 colocalized with Cyp19a1a in the oocytes and granulosa cells of middle and late vitellogenic follicles. In addition, three FoxH1 binding sites were identified in the proximal promoter of cyp19a1a, namely, FH1 (-871/-860), FH2 (-535/-524), and FH3 (-218/-207). FoxH1 overexpression significantly attenuated the activity of the cyp19a1a promoter in CHO cells, and FH1/2 mutation increased promoter activity. Taken together, these results suggest that FoxH1 may act as an important regulator in the ovarian development of M. albus by repressing cyp19a1a promoter activity, which provides a foundation for the study of FoxH1 function in bony fish reproductive processes.


Assuntos
Aromatase , Fatores de Transcrição Forkhead , Smegmamorpha , Animais , Cricetinae , Feminino , Sítios de Ligação , Cricetulus , Enguias/genética , Ovário , Smegmamorpha/genética , Fatores de Transcrição Forkhead/genética , Aromatase/genética , Regiões Promotoras Genéticas
14.
Animals (Basel) ; 13(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37444008

RESUMO

To explore the differences in the growth characteristics and population dynamics of Schizothorax wangchiachii populations in the Jinsha River (JSR) and the Yalong River (YLR), samples were collected in the upper reaches of the JSR (n = 230) from 2019 to 2020 and the middle reaches of the YLR (n = 187) from 2017 to 2018. In the JSR and YLR populations, the age range was 11 and 12 years old, respectively, and the best growth equation was the Von Bertalanffy equation. The comparative analysis of the two populations showed that the growth coefficient, initial sexual maturity age and age at first capture of the YLR population were greater than those of the JSR population. Comparing the mortality rates of the two groups, we found that the YLR population had the higher female mortality rate (0.658 years-1) and the lower male mortality rate (0.453 years-1). Our assessment of the three natural mortality rates showed that the Fcur of both male and female populations was greater than F25%, indicating that both populations were in an overexploited state. Therefore, we suggest considering the two groups as separate protection units and implementing management measures such as ecological regulation, restoration of tributary habitat and strengthening of fishing ban monitoring to protect their resources.

15.
Phys Chem Chem Phys ; 25(23): 15676-15682, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37254893

RESUMO

With the exploration of valleytronic materials in MA2Z4 structures, larger valley spin splitting has become a hot topic of research. Based on first-principles calculations, we predicted six valleytronic 2D (two-dimensional) Janus MSiGeZ4 (M = Cr and W; Z = N, P, and As) materials. The valley spin splitting value of WSiGeZ4 (Z = N, P, and As) can reach more than 400 meV, which is favorable for the practical application of valleytronics. Two-dimensional WSiGeZ4 (Z = N, P, and As) materials are dynamically and mechanically stable and have an abundance of electronic properties. The two-dimensional Janus WSiGeZ4 (Z = N, P, and As) structures comprise both direct and indirect bandgap semiconductor materials. Among them, WSiGeN4 is an indirect bandgap semiconductor material with a bandgap of 1.654 eV and WSiGeP4 is a direct bandgap semiconductor material. The valley spin splitting originates from the symmetry breaking of the material structure and the spin-orbit coupling effect of the transition metal, which is manifested as the Berry curvature. In particular, the Berry curvature of 2D Janus WSiGeP4 and WSiGeAs4 is as high as 300 Bohr2, which is quite large. The W atom has more d-orbital electrons than the Cr atom, and the SOC (spin-orbit coupling) effect is stronger; thus, the valley spin splitting value CrSiGeZ4 of WSiGeZ4 is more than 300 meV, which is quite large. In addition, the bandgap and valley spin splitting of WSiGeZ4 (Z = N, P, and As) can be significantly modulated by applying a biaxial strain. Our study shows that WSiGeZ4 (Z = N, P, and As) has great potential for valleytronic applications.

16.
Arch Toxicol ; 97(6): 1649-1658, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142754

RESUMO

Organotin chemicals (butyltins and phenyltins) are the most widely used organometallic chemicals worldwide and are used in industrial applications, such as biocides and anti-fouling paints. Tributyltin (TBT) and more recently, dibutyltin (DBT) and triphenyltin (TPT) have been reported to stimulate adipogenic differentiation. Although these chemicals co-exist in the environment, their effect in combination remains unknown. We first investigated the adipogenic effect of eight organotin chemicals (monobutyltin (MBT), DBT, TBT, tetrabutyltin (TeBT), monophenyltin (MPT), diphenyltin (DPT), TPT, and tin chloride (SnCl4)) in the 3T3-L1 preadipocyte cell line in single exposures at two doses (10 and 50 ng/ml). Only three out of the eight organotins induced adipogenic differentiation with TBT eliciting the strongest adipogenic differentiation (in a dose-dependent manner) followed by TPT and DBT, as demonstrated by lipid accumulation and gene expression. We then hypothesized that, in combination (TBT, DBT, and TPT), adipogenic effects will be exacerbated compared to single exposures. However, at the higher dose (50 ng/ml), TBT-induced differentiation was reduced by TPT and DBT when in dual or triple combination. We tested whether TPT or DBT would interfere with adipogenic differentiation stimulated by a peroxisome proliferator-activated receptor (PPARγ) agonist (rosiglitazone) or a glucocorticoid receptor agonist (dexamethasone). Both DBT50 and TPT50 reduced rosiglitazone-, but not dexamethasone-stimulated adipogenic differentiation. In conclusion, DBT and TPT interfere with TBT's adipogenic differentiation possibly via PPARγ signaling. These findings highlight the antagonistic effects among organotins and the need to understand the effects and mechanism of action of complex organotin mixtures on adipogenic outcomes.


Assuntos
PPAR gama , Compostos de Trialquitina , Animais , Camundongos , Rosiglitazona , PPAR gama/metabolismo , Células 3T3-L1 , Compostos de Trialquitina/toxicidade , Diferenciação Celular
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122874, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210857

RESUMO

In this paper, Ba2-x-yP2O7:xDy3+,yCe3+ phosphors are synthesized by calcining the precursor via chemical co-precipitation. The phase structure, excitation and emission spectra, thermal stability, the chromatic performance of phosphors, and energy transfer from Ce3+ to Dy3+ are studied and discussed. The results indicate the samples keep a stable crystal structure as a high-temperature σ-Ba2P2O7 phase with two different coordination of Ba2+ sites. Ba2P2O7:Dy3+ phosphors can be effectively excited by 349 nm n-UV light and emit 485 nm blue light and a relatively stronger yellow light peaking at 575 nm, corresponding to 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions of Dy3+, implying that Dy3+ mainly occupies the non-inversion symmetric sites. By contrast, Ba2P2O7:Ce3+ phosphors exhibit a broadband of excitation peaking at 312 nm, and two symmetrical emission peaks at 336 nm and 359 nm from 5d1→4F5/2 and 5d1→4F7/2 transitions of Ce3+, showing Ce3+ should merely be presumed to occupy Ba1 site. After Dy3+ and Ce3+ are co-doped, Ba2P2O7:Dy3+, Ce3+ phosphors exhibit the enhanced characteristic blue and yellow emission of Dy3+ with nearly equal intensity under excitation at 323 nm, meaning Ce3+ co-doping increases the symmetry of Dy3+ site as well as the sensitizer. Simultaneously, energy transfer from Dy3+ to Ce3+ is found and discussed. The thermal stability of co-doped phosphors was characterized and briefly analyzed. The color coordinates of Ba2P2O7:Dy3+ phosphors fall in the yellow-green region near the white light, while the emission moves towards the blue-green region after the Ce3+ is co-doped.

18.
J Colloid Interface Sci ; 644: 157-166, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105039

RESUMO

Solar interfacial steam power generation is a prospective method for seawater desalination. In this work, a salt-blocking three-dimensional (3D) Janus evaporator with a superhydrophobic to superhydrophilic gradient was fabricated by spraying a composite dispersion of multi-walled carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) onto the top side of a polyurethane (PU) foam and polyvinyl alcohol (PVA) solution onto the bottom side. The CNTs/PDMS composite dispersion with nanostructured CNTs and low surface energy PDMS combined with the porous structure of the PU foam rendered the top side superhydrophobic. Therefore, a layer suitable for photothermal conversion was obtained. The hydrophilic PVA combined with the porous structure of the foam rendered the bottom side superhydrophilic, facilitating water absorption and transportation. The asymmetric wettability gradient of the CNTs/PDMS-PU-PVA as a 3D evaporator caused the evaporation rate and transportation speed of water to reach a balance, and the salt was quickly dissolved at the superhydrophilic interface. This 3D salt-resistant Janus evaporator achieved an evaporation rate of 2.26 kg m-2 h-1 under 1 kW m-2 illumination.

19.
ACS Appl Mater Interfaces ; 15(9): 12109-12118, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813758

RESUMO

The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.

20.
ACS Appl Mater Interfaces ; 15(3): 4612-4622, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631727

RESUMO

The mechanical durability of superhydrophobic surfaces is of significance for their practical applications. However, few reports about superhydrophobic coating on certain substrates took into consideration both the mechanical stability of the superhydrophobic coating and adhesion stability between the coating and the substrate. Herein, we put forward a facile and efficient strategy to construct robust superhydrophobic coatings by simply spray-coating a composite suspension of SiO2 nanoparticles, polydimethylsiloxane (PDMS), and epoxy resin (EP) on substrates pretreated with an EP base-coating. The as-obtained coating exhibited excellent superhydrophobicity with water contact angle of 163° and sliding angle of 3.5°, which could endure UV irradiation of 180 h, immersion in acidic or basic solutions for 168 h, and outdoor exposure for over 30 days. Notably, the coating surface retained superhydrophobicity after being successively impacted with faucet water for 1 h, impinged with 360 g sand grains, and abraded with sandpaper of 120 grid under a load of 500 g for 5 m distance. The outstanding mechanical stability was mainly attributed to the cross-linking of EP and the elastic nature of PDMS which ensured strong cohesion inside the whole coating and to the substrate. Additionally, the coating showed self-healing capacity against O2 plasma etching. The method is simple with the materials commercially available and is expected to be widely applied in outdoor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA