Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37627427

RESUMO

In order to solve the problems of low efficiency and subjectivity of manual observation in the process of group-sheep-aggression detection, we propose a video streaming-based model for detecting aggressive behavior in group sheep. In the experiment, we collected videos of the sheep's daily routine and videos of the aggressive behavior of sheep in the sheep pen. Using the open-source software LabelImg, we labeled the data with bounding boxes. Firstly, the YOLOv5 detects all sheep in each frame of the video and outputs the coordinates information. Secondly, we sort the sheep's coordinates using a sheep tracking heuristic proposed in this paper. Finally, the sorted data are fed into an LSTM framework to predict the occurrence of aggression. To optimize the model's parameters, we analyze the confidence, batch size and skipping frame. The best-performing model from our experiments has 93.38% Precision and 91.86% Recall. Additionally, we compare our video streaming-based model with image-based models for detecting aggression in group sheep. In sheep aggression, the video stream detection model can solve the false detection phenomenon caused by head impact feature occlusion of aggressive sheep in the image detection model.

2.
Animals (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37106885

RESUMO

In large-scale meat sheep farming, high CO2 concentrations in sheep sheds can lead to stress and harm the healthy growth of meat sheep, so a timely and accurate understanding of the trend of CO2 concentration and early regulation are essential to ensure the environmental safety of sheep sheds and the welfare of meat sheep. In order to accurately understand and regulate CO2 concentrations in sheep barns, we propose a prediction method based on the RF-PSO-LSTM model. The approach we propose has four main parts. First, to address the problems of data packet loss, distortion, singular values, and differences in the magnitude of the ambient air quality data collected from sheep sheds, we performed data preprocessing using mean smoothing, linear interpolation, and data normalization. Second, to address the problems of many types of ambient air quality parameters in sheep barns and possible redundancy or overlapping information, we used a random forests algorithm (RF) to screen and rank the features affecting CO2 mass concentration and selected the top four features (light intensity, air relative humidity, air temperature, and PM2.5 mass concentration) as the input of the model to eliminate redundant information among the variables. Then, to address the problem of manually debugging the hyperparameters of the long short-term memory model (LSTM), which is time consuming and labor intensive, as well as potentially subjective, we used a particle swarm optimization (PSO) algorithm to obtain the optimal combination of parameters, avoiding the disadvantages of selecting hyperparameters based on subjective experience. Finally, we trained the LSTM model using the optimized parameters obtained by the PSO algorithm to obtain the proposed model in this paper. The experimental results show that our proposed model has a root mean square error (RMSE) of 75.422 µg·m-3, a mean absolute error (MAE) of 51.839 µg·m-3, and a coefficient of determination (R2) of 0.992. The model prediction curve is close to the real curve and has a good prediction effect, which can be useful for the accurate prediction and regulation of CO2 concentration in sheep barns in large-scale meat sheep farming.

3.
Animals (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766301

RESUMO

There are some problems with estrus detection in ewes in large-scale meat sheep farming: mainly, the manual detection method is labor-intensive and the contact sensor detection method causes stress reactions in ewes. To solve the abovementioned problems, we proposed a multi-objective detection layer neural network-based method for ewe estrus crawling behavior recognition. The approach we proposed has four main parts. Firstly, to address the problem of mismatch between our constructed ewe estrus dataset and the YOLO v3 anchor box size, we propose to obtain a new anchor box size by clustering the ewe estrus dataset using the K-means++ algorithm. Secondly, to address the problem of low model recognition precision caused by small imaging of distant ewes in the dataset, we added a 104 × 104 target detection layer, making the total target detection layer reach four layers, strengthening the model's ability to learn shallow information and improving the model's ability to detect small targets. Then, we added residual units to the residual structure of the model, so that the deep feature information of the model is not easily lost and further fused with the shallow feature information to speed up the training of the model. Finally, we maintain the aspect ratio of the images in the data-loading module of the model to reduce the distortion of the image information and increase the precision of the model. The experimental results show that our proposed model has 98.56% recognition precision, while recall was 98.04%, F1 value was 98%, mAP was 99.78%, FPS was 41 f/s, and model size was 276 M, which can meet the accurate and real-time recognition of ewe estrus behavior in large-scale meat sheep farming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA