Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719750

RESUMO

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Assuntos
Candida albicans , Doença Celíaca , Homeostase , Mastócitos , Doença Celíaca/imunologia , Doença Celíaca/microbiologia , Doença Celíaca/metabolismo , Humanos , Candida albicans/patogenicidade , Candida albicans/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Animais , Candida/patogenicidade , Candida/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo
2.
Front Mol Biosci ; 11: 1386598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721278

RESUMO

Humans interact with a multitude of microorganisms in various ecological relationships, ranging from commensalism to pathogenicity. The same applies to fungi, long recognized for their pathogenic roles in infection-such as in invasive fungal diseases caused, among others, by Aspergillus fumigatus and Candida spp.-and, more recently, for their beneficial activities as an integral part of the microbiota. Indeed, alterations in the fungal component of the microbiota, or mycobiota, have been associated with inflammatory, infectious and metabolic diseases, and cancer. Whether acting as opportunistic pathogens or symbiotic commensals, fungi possess a complex enzymatic repertoire that intertwines with that of the host. In this metabolic cross-talk, fungal enzymes may be unique, thus providing novel metabolic opportunities to the host, or, conversely, produce toxic metabolites. Indeed, administration of fungal probiotics and fungi-derived products may be beneficial in inflammatory and infectious diseases, but fungi may also produce a plethora of toxic secondary metabolites, collectively known as mycotoxins. Fungal enzymes may also be homologues to human enzymes, but nevertheless embedded in fungal-specific metabolic networks, determined by all the interconnected enzymes and molecules, quantitatively and qualitatively specific to the network, such that the activity and metabolic effects of each enzyme remain unique to fungi. In this Opinion, we explore the concept that targeting this fungal metabolic unicity, either in opportunistic pathogens or commensals, may be exploited to develop novel therapeutic strategies. In doing so, we present our recent experience in different pathological settings that ultimately converge on relevant trans-kingdom metabolic differences.

3.
Sci Rep ; 14(1): 6651, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509264

RESUMO

Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.


Assuntos
Esclerose Múltipla , Triptofano , Humanos , Cinurenina/metabolismo , Ligantes , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano Hidroxilase/metabolismo
4.
Blood ; 143(16): 1628-1645, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38227935

RESUMO

ABSTRACT: CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.


Assuntos
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Adulto , Humanos , Antifúngicos/uso terapêutico , Disbiose/etiologia , Daunorrubicina , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Homeostase
5.
Pharmacol Res ; 201: 107086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295917

RESUMO

The progress in human disease treatment can be greatly advanced through the implementation of nanomedicine. This approach involves targeted and cell-specific therapy, controlled drug release, personalized dosage forms, wearable drug delivery, and companion diagnostics. By integrating cutting-edge technologies with drug delivery systems, greater precision can be achieved at the tissue and cellular levels through the use of stimuli-responsive nanoparticles, and the development of electrochemical sensor systems. This precision targeting - by virtue of nanotechnology - allows for therapy to be directed specifically to affected tissues while greatly reducing side effects on healthy tissues. As such, nanomedicine has the potential to transform the treatment of conditions such as cancer, genetic diseases, and chronic illnesses by facilitating precise and cell-specific drug delivery. Additionally, personalized dosage forms and wearable devices offer the ability to tailor treatment to the unique needs of each patient, thereby increasing therapeutic effectiveness and compliance. Companion diagnostics further enable efficient monitoring of treatment response, enabling customized adjustments to the treatment plan. The question of whether all the potential therapeutic approaches outlined here are viable alternatives to current treatments is also discussed. In general, the application of nanotechnology in the field of biomedicine may provide a strong alternative to existing treatments for several reasons. In this review, we aim to present evidence that, although in early stages, fully merging advanced technology with innovative drug delivery shows promise for successful implementation across various disease areas, including cancer and genetic or chronic diseases.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Nanomedicina , Neoplasias/tratamento farmacológico
6.
J Pharm Pharmacol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092697

RESUMO

Biological membrane-engineered lipid nanoparticles (LNP) have shown enormous potential as vehicles for drug delivery due to their outstanding biomimetic properties. To make these nanoparticles more adaptable to complex biological systems, several methods and cellular sources have been adopted to introduce biomembrane-derived moieties onto LNP and provide the latter with more functions while preserving their intrinsic nature. In this review, we focus on LNP decoration with specific regard to mRNA therapeutics and vaccines. The bio-engineering approach exploits a variety of biomembranes for functionalization, such as those derived from red blood cells, white blood cells, cancer cells, platelets, exosomes, and others. Biomembrane engineering could greatly enhance efficiency in targeted drug delivery, treatment, and diagnosis of cancer, inflammation, immunological diseases, and a variety of pathologic conditions. These membrane-modification techniques are expected to advance biomembrane-derived LNP into wider applications in the future.

7.
Polymers (Basel) ; 15(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242821

RESUMO

Biodegradable metal alloys may be successfully used to support bone repair, avoiding second surgery commonly needed when inert metal alloys are used. Combining a biodegradable metal alloy with a suitable pain relief agent could improve patient quality of life. AZ31 alloy was coated using a poly(lactic-co-glycolic) acid (PLGA) polymer loaded with ketorolac tromethamine using the solvent casting method. The ketorolac release profile from the polymeric film and the coated AZ31 samples, the PLGA mass loss of polymeric film, and the cytotoxicity of the optimized coated alloy were assessed. The coated sample showed a ketorolac release that was prolonged for two weeks, which was slower than that of just the polymeric film, in simulated body fluid. PLGA mass loss was complete after a 45-day immersion in simulated body fluid. The PLGA coating was able to lower AZ31 and ketorolac tromethamine cytotoxicity observed in human osteoblasts. PLGA coating also prevents AZ31 cytotoxicity, which was identified in human fibroblasts. Therefore, PLGA was able to control ketorolac release and protect AZ31 from premature corrosion. These characteristics allow us to hypothesize that the use of ketorolac tromethamine-loaded PLGA coating on AZ31 in the management of bone fractures can favor osteosynthesis and relief pain.

8.
Mol Pharm ; 20(5): 2545-2555, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070956

RESUMO

Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).


Assuntos
Inteligência Artificial , Relação Quantitativa Estrutura-Atividade , Humanos , Disponibilidade Biológica , Absorção Intestinal , Preparações Farmacêuticas , Modelos Biológicos
9.
Pharmaceutics ; 15(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36839828

RESUMO

Developing therapeutics for inflammatory diseases is challenging due to physiological mucosal barriers, systemic side effects, and the local microbiota. In the search for novel methods to overcome some of these problems, drug delivery systems that improve tissue-targeted drug delivery and modulate the microbiota are highly desirable. Microbial metabolites are known to regulate immune responses, an observation that has resulted in important conceptual advances in areas such as metabolite pharmacology and metabolite therapeutics. Indeed, the doctrine of "one molecule, one target, one disease" that has dominated the pharmaceutical industry in the 20th century is being replaced by developing therapeutics which simultaneously manipulate multiple targets through novel formulation approaches, including the multitarget-directed ligands. Thus, metabolites may not only represent biomarkers for disease development, but also, being causally linked to human diseases, an unexploited source of therapeutics. We have shown the successful exploitation of this approach: by deciphering how signaling molecules, such as the microbial metabolite, indole-3-aldehyde, and the repurposed drug anakinra, interact with the aryl hydrocarbon receptor may pave the way for novel therapeutics in inflammatory human diseases, for the realization of which drug delivery platforms are instrumental.

10.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768539

RESUMO

As an appealing alternative to treat and prevent diseases ranging from cancer to COVID-19, mRNA has demonstrated significant clinical effects. Nanotechnology facilitates the successful implementation of the systemic delivery of mRNA for safe human consumption. In this manuscript, we provide an overview of current mRNA therapeutic applications and discuss key biological barriers to delivery and recent advances in the development of nonviral systems. The relevant challenges that LNPs face in achieving cost-effective and widespread clinical implementation when delivering mRNA are likewise discussed.


Assuntos
COVID-19 , Nanopartículas , Humanos , RNA Mensageiro/genética , Lipossomos
11.
J Funct Biomater ; 14(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826883

RESUMO

Recently, silver-based nanoparticles have been proposed as components of wound dressings due to their antimicrobial activity. Unfortunately, they are cytotoxic for keratinocytes and fibroblasts, and this limits their use. Less consideration has been given to the use of AgCl nanoparticles in wound dressings. In this paper, a sustainable preparation of alginate AgCl nanoparticles composite films by simultaneous alginate gelation and AgCl nanoparticle formation in the presence of CaCl2 solution is proposed with the aim of obtaining films with antimicrobial and antibiofilm activities and low cytotoxicity. First, AgNO3 alginate films were prepared, and then, gelation and nanoparticle formation were induced by film immersion in CaCl2 solution. Films characterization revealed the presence of both AgCl and metallic silver nanoparticles, which resulted as quite homogeneously distributed, and good hydration properties. Finally, films were tested for their antimicrobial and antibiofilm activities against Staphylococcus epidermidis (ATCC 12228), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 15692), and the yeast Candida albicans. Composite films showed antibacterial and antibiofilm activities against the tested bacteria and resulted as less active towards Candida albicans. Film cytotoxicity was investigated towards human dermis fibroblasts (HuDe) and human skin keratinocytes (NCTC2544). Composite films showed low cytotoxicity, especially towards fibroblasts. Thus, the proposed sustainable approach allows to obtain composite films of Ag/AgCl alginate nanoparticles capable of preventing the onset of infections without showing high cytotoxicity for tissue cells.

12.
Am J Respir Cell Mol Biol ; 68(3): 288-301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36252182

RESUMO

Hypoxia contributes to the exaggerated yet ineffective airway inflammation that fails to oppose infections in cystic fibrosis (CF). However, the potential for impairment of essential immune functions by HIF-1α (hypoxia-inducible factor 1α) inhibition demands a better comprehension of downstream hypoxia-dependent pathways that are amenable for manipulation. We assessed here whether hypoxia may interfere with the activity of AhR (aryl hydrocarbon receptor), a versatile environmental sensor highly expressed in the lungs, where it plays a homeostatic role. We used murine models of Aspergillus fumigatus infection in vivo and human cells in vitro to define the functional role of AhR in CF, evaluate the impact of hypoxia on AhR expression and activity, and assess whether AhR agonism may antagonize hypoxia-driven inflammation. We demonstrated that there is an important interferential cross-talk between the AhR and HIF-1α signaling pathways in murine and human CF, in that HIF-1α induction squelched the normal AhR response through an impaired formation of the AhR:ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF-1ß heterodimer. However, functional studies and analysis of the AhR genetic variability in patients with CF proved that AhR agonism could prevent hypoxia-driven inflammation, restore immune homeostasis, and improve lung function. This study emphasizes the contribution of environmental factors, such as infections, in CF disease progression and suggests the exploitation of hypoxia:xenobiotic receptor cross-talk for antiinflammatory therapy in CF.


Assuntos
Fibrose Cística , Receptores de Hidrocarboneto Arílico , Humanos , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Inflamação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
13.
J Control Release ; 353: 1023-1036, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442616

RESUMO

Inflammation is a key pathological driver in cystic fibrosis (CF). Current therapies are ineffective in treating and preventing the escalation of inflammatory events often exacerbated by superimposed infection. In this work, we propose a novel treatment based on the pulmonary administration of anakinra, a non-glycosylated recombinant form of IL-1Ra. An inhalable dry powder of anakinra was successfully developed to meet the specific needs of lung drug delivery. The new formulation was investigated in vitro for aerodynamic performances and activity and in vivo for its pharmacological profile, including the pharmacokinetics, treatment schedule, antimicrobial and anti-inflammatory activity and systemic toxicity. The protein was structurally preserved inside the formulation and retained its pharmacological activity in vitro immediately after preparation and over time when stored at ambient conditions. Anakinra when delivered to the lungs showed an improved and extended therapeutic efficacy in CF models in vivo as well as higher potency compared to systemic delivery. Peripheral side effects were significantly reduced and correlated with lower serum levels compared to systemic treatment. These findings provide proof-of-concept demonstration for anakinra repurposing in CF through the pulmonary route.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Reposicionamento de Medicamentos , Administração por Inalação , Pulmão/metabolismo , Pós/uso terapêutico
15.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35890082

RESUMO

The knowledge about the effect of hydrotalcites (HTlcs), largely used in pharmaceutics, on non-malignant cell lines is limited. The effect of MgAl-HTlc-and ZnAl-HTlc- (NO3−/Cl−/CO32−) on the cell viability of HaCat, fibroblasts and HepG2 was studied by MTT assay. Cells were incubated either with HTlc suspensions in the culture media and with the supernatant obtained from the suspension being centrifuged. MgAl-HTlcs suspensions resulted in being cytotoxic. As SEM and TEM analyses showed the presence of sub-micrometric particles in all the MgAl-HTlc examined, it could be hypothesized that this fraction can be internalized into cells reducing the viability. MgAl-HTlc-NO3 is the most cytotoxic probably due to the additional effect of NO3− anions. ZnAl-HTlcs are cytotoxic, especially for HaCat and HepG2 cells (viability <60% at all the concentrations assayed). The effect is attributable both to the sub-micrometric fraction (identified by TEM) and to the high Zn2+ levels found in the culture medium by ICP-OES analysis, suggesting that ZnAl-HTlcs are less stable than MgAl-HTlc in the used media. The obtained results suggest that it is very important to perform ad hoc studies in order to evaluate HTlc safety before to be introduced in a formulation.

16.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236743

RESUMO

BACKGROUND: Despite the great success, the therapeutic benefits of immune checkpoint inhibitors (ICIs) in cancer immunotherapy are limited by either various resistance mechanisms or ICI-associated toxic effects including gastrointestinal toxicity. Thus, novel therapeutic strategies that provide manageable side effects to existing ICIs would enhance and expand their therapeutic efficacy and application. Due to its proven role in cancer development and immune regulation, gut microbiome has gained increasing expectation as a potential armamentarium to optimize immunotherapy with ICI. However, much has to be learned to fully harness gut microbiome for clinical applicability. Here we have assessed whether microbial metabolites working at the interface between microbes and the host immune system may optimize ICI therapy. METHODS: To this purpose, we have tested indole-3-carboxaldehyde (3-IAld), a microbial tryptophan catabolite known to contribute to epithelial barrier function and immune homeostasis in the gut via the aryl hydrocarbon receptor (AhR), in different murine models of ICI-induced colitis. Epithelial barrier integrity, inflammation and changes in gut microbiome composition and function were analyzed. AhR, indoleamine 2,3-dioxygenase 1, interleukin (IL)-10 and IL-22 knockout mice were used to investigate the mechanism of 3-IAld activity. The function of the microbiome changes induced by 3-IAld was evaluated on fecal microbiome transplantation (FMT). Finally, murine tumor models were used to assess the effect of 3-IAld treatment on the antitumor activity of ICI. RESULTS: On administration to mice with ICI-induced colitis, 3-IAld protected mice from intestinal damage via a dual action on both the host and the microbes. Indeed, paralleling the activation of the host AhR/IL-22-dependent pathway, 3-IAld also affected the composition and function of the microbiota such that FMT from 3-IAld-treated mice protected against ICI-induced colitis with the contribution of butyrate-producing bacteria. Importantly, while preventing intestinal damage, 3-IAld did not impair the antitumor activity of ICI. CONCLUSIONS: This study provides a proof-of-concept demonstration that moving past bacterial phylogeny and focusing on bacterial metabolome may lead to a new class of discrete molecules, and that working at the interface between microbes and the host immune system may optimize ICI therapy.


Assuntos
Colite , Neoplasias , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Resultado do Tratamento , Triptofano/farmacologia
17.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35337134

RESUMO

Alterations of the microbiome occur in inflammatory and autoimmune diseases, a finding consistent with the role of the microbiome in the maintenance of the immune system homeostasis. In this regard, L-tryptophan (Trp) metabolites, of both host and microbial origin, act as important regulators of host-microbial symbiosis by acting as aryl hydrocarbon receptor (AhR) ligands. The intestinal and respiratory barriers are very sensitive to AhR activity, suggesting that AhR modulation could be a therapeutic option to maintain the integrity of the epithelial barrier, which has substantial implications for health even beyond the mucosal site. A number of studies have highlighted the capacity of AhR to respond to indoles and indolyl metabolites, thus positioning AhR as a candidate indole receptor. However, the context-and ligand-dependent activity of AhR requires one to resort to suitable biopharmaceutical formulations to enable site-specific drug delivery in order to achieve therapeutic effectiveness, decrease unwanted toxicities and prevent off-target effects. In this review, we highlight the dual activity of the microbial metabolite indole-3-aldehyde at the host-microbe interface and its ability to orchestrate host pathophysiology and microbial symbiosis and discuss how its proper clinical development may turn into a valuable therapeutic strategy in local and distant inflammatory diseases.

18.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34847078

RESUMO

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Oxirredução/efeitos dos fármacos
19.
Vaccines (Basel) ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835243

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder that affects multiple organs, although a decline in respiratory function represents the major cause of morbidity and mortality. The airways of CF patients are characterized by a chronic inflammatory state to which the receptor for advanced glycation end-products greatly contributes. Glyoxalase 1 (GLO1) is the major enzyme metabolizing methylglyoxal, a potent precursor of advanced glycation end-products. Its role in CF has never been investigated. We herein resorted to murine and human preclinical models of CF to define the contribution of GLO1 to inflammatory pathology. We found that the expression and activity of GLO1, measured by real-time PCR and Western blot or a specific spectrophotometric assay, respectively, are defective in mice and human bronchial cells from CF patients exposed to Aspergillus fumigatus, a common pathogen in CF, but could be restored upon blockade of interleukin-1 receptor signaling by anakinra in mice. This study suggests that GLO1 contributes to pathology in CF and may be potentially targeted to mitigate inflammation.

20.
Int J Pharm ; 607: 121004, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34391857

RESUMO

A tryptophan metabolite of microbial origin, indole-3-carboxaldehyde (3-IAld), has been recently identified as a Janus molecule that, acting at the host-pathogen interface and activating the aryl hydrocarbon receptor, can result as a potential candidate to treat infections as well as diseases with an inflammatory and/or immune component. In this work, an inhaled dry powder of 3-IAld was developed and evaluated for its efficacy, compared to oral and intranasal administration using an aspergillosis model of infection and inflammation. The obtained inhalable dry powder was shown to: i) be suitable to be delivered for pulmonary administration, ii) possess good toxicological safety, and iii) be superior to other administration modalities (oral and intranasal) in reducing disease scores by acting on infection and inflammation. This study supports the use of 3-IAld inhalable dry powders as a potential novel therapeutic tool to target inflammation and infection in pulmonary diseases.


Assuntos
Inaladores de Pó Seco , Pneumonia , Administração por Inalação , Aerossóis , Humanos , Indóis , Tamanho da Partícula , Pneumonia/tratamento farmacológico , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA