Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(1): 937-957, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416668

RESUMO

The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.

2.
J Cell Physiol ; 232(5): 1135-1143, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27580416

RESUMO

Exogenous High Mobility Group Box-1 protein (HMGB1) has been reported to protect the infarcted heart but the underlying mechanism is quite complex. In particular, its effect on ischemic cardiomyocytes has been poorly investigated. Aim of the present study was to verify whether and how autophagy and apoptosis were involved in HMGB1-induced heart repair following myocardial infarction (MI). HMGB1 (200 ng) or denatured HMGB1 were injected in the peri-infarcted region of mouse hearts following acute MI. Three days after treatment, an upregulation of autophagy was detected in infarcted HMGB1 treated hearts compared to controls. Specifically, HMGB1 induced autophagy by significantly upregulating the protein expression of LC3, Beclin-1, and Atg7 in the border zone. To gain further insights into the molecular mechanism of HMGB1-mediated autophagy, WB analysis were performed in cardiomyocytes isolated from 3 days infarcted hearts in the presence and in the absence of HMGB1 treatment. Results showed that upregulation of autophagy by HMGB1 treatment was potentially related to activation of AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Accordingly, in these hearts, phospho-Akt signaling pathway was inhibited. The induction of autophagy was accompanied by reduced cardiomyocyte apoptotic rate and decreased expression levels of Bax/Bcl-2 and active caspase-3 in the border zone of 3 days infarcted mice following HMGB1 treatment. We report the first in vivo evidence that HMGB1 treatment in a murine model of acute MI might induce cardiomyocyte survival through attenuation of apoptosis and AMP-activated protein kinase-dependent autophagy. J. Cell. Physiol. 232: 1135-1143, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína HMGB1/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Infarto do Miocárdio/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biomarcadores/metabolismo , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Testes de Função Cardíaca , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
3.
Int J Cardiol ; 197: 333-47, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26159041

RESUMO

BACKGROUND: We recently demonstrated that epicardial progenitor cells participate in the regenerative response to myocardial infarction (MI) and factors released in the pericardial fluid (PF) may play a key role in this process. Exosomes are secreted nanovesicles of endocytic origin, identified in most body fluids, which may contain molecules able to modulate a variety of cell functions. Here, we investigated whether exosomes are present in the PF and their potential role in cardiac repair. METHODS AND RESULTS: Early gene expression studies in 3day-infarcted mouse hearts showed that PF induces epithelial-to-mesenchymal transition (EMT) in epicardial cells. Exosomes were identified in PFs from non-infarcted patients (PFC) and patients with acute MI (PFMI). A shotgun proteomics analysis identified clusterin in exosomes isolated from PFMI but not from PFC. Notably, clusterin has a protective effect on cardiomyocytes after acute MI in vivo and is an important mediator of TGFß-induced. Clusterin addition to the pericardial sac determined an increase in epicardial cells expressing the EMT marker α-SMA and, interestingly, an increase in the number of epicardial cells ckit(+)/α-SMA(+), 7days following MI. Importantly, clusterin treatment enhanced arteriolar length density and lowered apoptotic rates in the peri-infarct area. Hemodynamic studies demonstrated an improvement in cardiac function in clusterin-treated compared to untreated infarcted hearts. CONCLUSIONS: Exosomes are present and detectable in the PFs. Clusterin was identified in PFMI-exosomes and might account for an improvement in myocardial performance following MI through a framework including EMT-mediated epicardial activation, arteriogenesis and reduced cardiomyocyte apoptosis.


Assuntos
Clusterina/metabolismo , Vasos Coronários/metabolismo , Exossomos/metabolismo , Infarto do Miocárdio/metabolismo , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/fisiologia , Biomarcadores/análise , Biomarcadores/metabolismo , Clusterina/análise , Vasos Coronários/química , Exossomos/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/patologia , Líquido Pericárdico/química , Pericárdio/química , Pericárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA