Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003019

RESUMO

Translation initiation in eukaryotes is regulated at several steps, one of which involves the availability of the cap binding protein to participate in cap-dependent protein synthesis. Binding of eIF4E to translational repressors (eIF4E-binding proteins [4E-BPs]) suppresses translation and is used by cells to link extra- and intracellular cues to protein synthetic rates. The best studied of these interactions involves repression of translation by 4E-BP1 upon inhibition of the PI3K/mTOR signaling pathway. Herein, we characterize a novel 4E-BP, C8ORF88, whose expression is predominantly restricted to early spermatids. C8ORF88:eIF4E interaction is dependent on the canonical eIF4E binding motif (4E-BM) present in other 4E-BPs. Whereas 4E-BP1:eIF4E interaction is dependent on the phosphorylation of 4E-BP1, these sites are not conserved in C8ORF88 indicating a different mode of regulation.


Assuntos
Proteínas de Transporte , Fator de Iniciação 4E em Eucariotos , Proteínas de Transporte/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Fosforilação
2.
Sci Rep ; 11(1): 18516, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531456

RESUMO

Rocaglates are a class of eukaryotic translation initiation inhibitors that are being explored as chemotherapeutic agents. They function by targeting eukaryotic initiation factor (eIF) 4A, an RNA helicase critical for recruitment of the 40S ribosome (and associated factors) to mRNA templates. Rocaglates perturb eIF4A activity by imparting a gain-of-function activity to eIF4A and mediating clamping to RNA. To appreciate how rocaglates could best be enabled in the clinic, an understanding of resistance mechanisms is important, as this could inform on strategies to bypass such events as well as identify responsive tumor types. Here, we report on the results of a positive selection, ORFeome screen aimed at identifying cDNAs capable of conferring resistance to rocaglates. Two of the most potent modifiers of rocaglate response identified were the transcription factors FOXP3 and NR1I3, both of which have been implicated in ABCB1 regulation-the gene encoding P-glycoprotein (Pgp). Pgp has previously been implicated in conferring resistance to silvestrol, a naturally occurring rocaglate, and we show here that this extends to additional synthetic rocaglate derivatives. In addition, FOXP3 and NR1I3 impart a multi-drug resistant phenotype that is reversed upon inhibition of Pgp, suggesting a potential therapeutic combination strategy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Benzofuranos/farmacologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Receptores Citoplasmáticos e Nucleares/genética , Linhagem Celular , Receptor Constitutivo de Androstano , Regulação da Expressão Gênica/efeitos dos fármacos , Testes Genéticos , Humanos
3.
ACS Chem Biol ; 15(6): 1621-1629, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32401488

RESUMO

Eukaryotic initiation factor (eIF) 4A3 is a DEAD-box RNA helicase and a core component of the exon-junction complex (EJC). The EJC marks the location of exon:exon junctions following the removal of introns by splicing and plays a critical role in an mRNA surveillance program known as nonsense-mediated decay (NMD). NMD is often triggered by the presence of a premature termination codon (PTC) upstream of the EJC, leading to degradation of the variant mRNA which prevents synthesis of a potentially harmful, truncated polypeptide. One approach by which to treat rare diseases where the underlying cause is a PTC is thus to prevent NMD, while stimulating readthrough of the PTC. Hence, there is much interest in inhibiting NMD, and recently a set of small molecules, 1,4-diacylpiperazine derivatives, targeting eIF4A3 has been developed and shown to harbor such activity. Herein, we undertake a CRISPR/Cas9-based variomics screen to identify eIF4A3 alleles resistant to said compounds. Our results provide genetic evidence linking compound bioactivity to eIF4A3 engagement.


Assuntos
Sistemas CRISPR-Cas , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Alelos , RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA