Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499904

RESUMO

The forward and reverse phase transformation from face-centered cubic (fcc) to hexagonal close-packed (hcp) in the equiatomic high-entropy alloy (HEA) CrMnFeCoNi has been investigated with diffraction of high-energy synchrotron radiation. The forward transformation has been induced by high pressure torsion at room and liquid nitrogen temperature by applying different hydrostatic pressures and large shear strains. The volume fraction of hcp phase has been determined by Rietveld analysis after pressure release and heating-up to room temperature as a function of hydrostatic pressure. It increases with pressure and decreasing temperature. Depending on temperature, a certain pressure is necessary to induce the phase transformation. In addition, the onset pressure depends on hydrostaticity; it is lowered by shear stresses. The reverse transformation evolves over a long period of time at ambient conditions due to the destabilization of the hcp phase. The effect of the phase transformation on the microstructure and texture development and corresponding microhardness of the HEA at room temperature is demonstrated. The phase transformation leads to an inhomogeneous microstructure, weakening of the shear texture, and a surprising hardness anomaly. Reasons for the hardness anomaly are discussed in detail.

2.
Materials (Basel) ; 11(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370130

RESUMO

Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater.2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd-10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%.

3.
Sci Rep ; 6: 28390, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328948

RESUMO

The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

4.
J Mech Behav Biomed Mater ; 62: 93-105, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179768

RESUMO

Biocompatible ß Ti-45Nb (wt%) alloys were subjected to different methods of severe plastic deformation (SPD) in order to increase the mechanical strength without increasing the low Young׳s modulus thus avoiding the stress shielding effect. The mechanical properties, microstructural changes and texture evolution were investigated, by means of tensile, microhardness and nanoindentation tests, as well as TEM and XRD. Significant increases of hardness and ultimate tensile strength up to a factor 1.6 and 2, respectively, could be achieved depending on the SPD method applied (hydrostatic extrusion - HE, high pressure torsion - HPT, and rolling and folding - R&F), while maintaining the considerable ductility. Due to the high content of ß-stabilizing Nb, the initial lattice structure turned out to be stable upon all of the SPD methods applied. This explains why with all SPD methods the apparent Young׳s modulus measured by nanoindentation did not exceed that of the non-processed material. For its variations below that level, they could be quantitatively related to changes in the SPD-induced texture, by means of calculations of the Young׳s modulus on basis of the texture data which were carefully measured for all different SPD techniques and strains. This is especially true for the significant decrease of Young׳s modulus for increasing R&F processing which is thus identified as a texture effect. Considering the mechanical biocompatibility (percentage of hardness over Young׳s modulus), a value of 3-4% is achieved with all the SPD routes applied which recommends them for enhancing ß Ti-alloys for biomedical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais , Módulo de Elasticidade , Nióbio , Resistência à Tração , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA