Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
EBioMedicine ; 77: 103902, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35228013

RESUMO

BACKGROUND: There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS: In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS: We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION: Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING: This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2/genética
2.
Nat Commun ; 13(1): 933, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177602

RESUMO

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Antiprotozoários/isolamento & purificação , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/isolamento & purificação , Antígenos de Protozoários/metabolismo , Linhagem Celular , Drosophila melanogaster , Epitopos/imunologia , Humanos , Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Desenvolvimento de Vacinas
3.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35139037

RESUMO

BackgroundAlthough recent epidemiological data suggest that pneumococci may contribute to the risk of SARS-CoV-2 disease, cases of coinfection with Streptococcus pneumoniae in patients with coronavirus disease 2019 (COVID-19) during hospitalization have been reported infrequently. This apparent contradiction may be explained by interactions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pneumococci in the upper airway, resulting in the escape of SARS-CoV-2 from protective host immune responses.MethodsHere, we investigated the relationship of these 2 respiratory pathogens in 2 distinct cohorts of health care workers with asymptomatic or mildly symptomatic SARS-CoV-2 infection identified by systematic screening and patients with moderate to severe disease who presented to the hospital. We assessed the effect of coinfection on host antibody, cellular, and inflammatory responses to the virus.ResultsIn both cohorts, pneumococcal colonization was associated with diminished antiviral immune responses, which primarily affected mucosal IgA levels among individuals with mild or asymptomatic infection and cellular memory responses in infected patients.ConclusionOur findings suggest that S. pneumoniae impair host immunity to SARS-CoV-2 and raise the question of whether pneumococcal carriage also enables immune escape of other respiratory viruses and facilitates reinfection.Trial registrationISRCTN89159899 (FASTER study) and ClinicalTrials.gov NCT03502291 (LAIV study).


Assuntos
COVID-19 , SARS-CoV-2 , Pessoal de Saúde , Humanos , Imunidade , Streptococcus pneumoniae
4.
Front Cell Infect Microbiol ; 12: 1049065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605129

RESUMO

Background: RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods: Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results: The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion: An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Camundongos , Ratos , Animais , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum , Anticorpos Antiprotozoários , Vacinas Combinadas
5.
Cell Rep Med ; 2(7): 100326, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337556

RESUMO

Reticulocyte-binding protein homolog 5 (RH5) is a leading Plasmodium falciparum blood-stage vaccine candidate. Another possible candidate, apical membrane antigen 1 (AMA1), was not efficacious in malaria-endemic populations, likely due to pre-existing antimalarial antibodies that interfered with the activity of vaccine-induced AMA1 antibodies, as judged by in vitro growth inhibition assay (GIA). To determine how pre-existing antibodies interact with vaccine-induced RH5 antibodies, we purify total and RH5-specific immunoglobulin Gs (IgGs) from malaria-exposed Malians and malaria-naive RH5 vaccinees. Infection-induced RH5 antibody titers are much lower than those induced by vaccination, and RH5-specific IgGs show differences in the binding site between the two populations. In GIA, Malian polyclonal IgGs show additive or synergistic interactions with RH5 human monoclonal antibodies and overall additive interactions with vaccine-induced polyclonal RH5 IgGs. These results suggest that pre-existing antibodies will interact favorably with vaccine-induced RH5 antibodies, in contrast to AMA1 antibodies. This study supports RH5 vaccine trials in malaria-endemic regions.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Antimaláricos/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/imunologia , Lactente , Malária Falciparum/epidemiologia , Masculino , Mali , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Vacinação , Adulto Jovem
6.
mSphere ; 6(4): e0064721, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378982

RESUMO

Basigin, or CD147, has been reported as a coreceptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes, where it is bound by one of the parasite's invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (expressed in either Escherichia coli or mammalian cells). Further, polyclonal anti-basigin IgG did not block SARS-CoV-2 infection of Vero E6 cells. Given the immense interest in SARS-CoV-2 therapeutic targets to improve treatment options for those who become seriously ill with coronavirus disease 2019 (COVID-19), we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. IMPORTANCE Reducing the mortality and morbidity associated with COVID-19 remains a global health priority. Vaccines have proven highly effective at preventing infection and hospitalization, but efforts must continue to improve treatment options for those who still become seriously ill. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a coreceptor for SARS-CoV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a coreceptor and plausibility as a therapeutic target.


Assuntos
Basigina/metabolismo , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Basigina/imunologia , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Internalização do Vírus
7.
Med ; 2(6): 701-719.e19, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34223402

RESUMO

BACKGROUND: Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS: We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS: The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 µg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS: Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING: This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Humanos , Malária/induzido quimicamente , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinação , Vacinas Sintéticas
8.
ACS Cent Sci ; 7(4): 594-602, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34056089

RESUMO

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

9.
bioRxiv ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501433

RESUMO

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

10.
NPJ Vaccines ; 5(1): 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793398

RESUMO

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

12.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540052

RESUMO

Candida albicans is a polymorphic fungus responsible for mucosal and skin infections. Candida cells establish themselves into biofilm communities resistant to most currently available antifungal agents. An increase of severe infections ensuing in fungal septic shock in elderly or immunosuppressed patients, along with the emergence of drug-resistant strains, urge the need for the development of alternative antifungal agents. In the search for novel antifungal drugs our laboratory demonstrated that two human ribonucleases from the vertebrate-specific RNaseA superfamily, hRNase3 and hRNase7, display a high anticandidal activity. In a previous work, we proved that the N-terminal region of the RNases was sufficient to reproduce most of the parental protein bactericidal activity. Next, we explored their potency against a fungal pathogen. Here, we have tested the N-terminal derived peptides that correspond to the eight human canonical RNases (RN1-8) against planktonic cells and biofilms of C. albicans. RN3 and RN7 peptides displayed the most potent inhibitory effect with a mechanism of action characterized by cell-wall binding, membrane permeabilization and biofilm eradication activities. Both peptides are able to eradicate planktonic and sessile cells, and to alter their gene expression, reinforcing its role as a lead candidate to develop novel antifungal and antibiofilm therapies.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Ribonucleases/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteína Catiônica de Eosinófilo/química , Proteína Catiônica de Eosinófilo/metabolismo , Proteína Catiônica de Eosinófilo/farmacologia , Humanos , Peptídeos/metabolismo , Ribonucleases/metabolismo , Ribonucleases/farmacologia
13.
Front Immunol ; 10: 1500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312205

RESUMO

The development of novel treatment against tuberculosis is a priority global health challenge. Antimicrobial proteins and peptides offer a multifaceted mechanism suitable to fight bacterial resistance. Within the RNaseA superfamily there is a group of highly cationic proteins secreted by innate immune cells with anti-infective and immune-regulatory properties. In this work, we have tested the human canonical members of the RNase family using a spot-culture growth inhibition assay based mycobacteria-infected macrophage model for evaluating their anti-tubercular properties. Out of the seven tested recombinant human RNases, we have identified two members, RNase3 and RNase6, which were highly effective against Mycobacterium aurum extra- and intracellularly and induced an autophagy process. We observed the proteins internalization within macrophages and their capacity to eradicate the intracellular mycobacterial infection at a low micro-molar range. Contribution of the enzymatic activity was discarded by site-directed mutagenesis at the RNase catalytic site. The protein induction of autophagy was analyzed by RT-qPCR, western blot, immunofluorescence, and electron microscopy. Specific blockage of auto-phagosome formation and maturation reduced the protein's ability to eradicate the infection. In addition, we found that the M. aurum infection of human THP1 macrophages modulates the expression of endogenous RNase3 and RNase6, suggesting a function in vivo. Overall, our data anticipate a biological role for human antimicrobial RNases in host response to mycobacterial infections and set the basis for the design of novel anti-tubercular drugs.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Catiônica de Eosinófilo/farmacologia , Exonucleases/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacteriaceae/efeitos dos fármacos , Tuberculose/enzimologia , Animais , Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Proteína Catiônica de Eosinófilo/metabolismo , Exonucleases/metabolismo , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Mycobacteriaceae/metabolismo , Células RAW 264.7 , Células THP-1 , Tuberculose/tratamento farmacológico
14.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204103

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
15.
Structure ; 26(10): 1384-1392.e3, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30078642

RESUMO

Procollagen C-proteinase enhancer-1 (PCPE-1) is a secreted protein that specifically accelerates proteolytic release of the C-propeptides from fibrillar procollagens, a crucial step in fibril assembly. As such, it is a potential therapeutic target to improve tissue repair and prevent fibrosis, a major cause of mortality worldwide. Here we present the crystal structure of the active CUB1CUB2 fragment of PCPE-1 bound to the C-propeptide trimer of procollagen III (CPIII). This shows that the two CUB domains bind to two different chains of CPIII and that the N-terminal region of one CPIII chain, close to the proteolytic cleavage site, lies in the cleft between CUB1 and CUB2. This suggests that enhancing activity involves unraveling of this chain from the rest of the trimer, thus facilitating the action of the proteinase involved. Support for this hypothesis comes from site-directed mutagenesis, enzyme assays, binding studies, and molecular modeling.


Assuntos
Colágeno Tipo III/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Mutagênese Sítio-Dirigida/métodos , Sítios de Ligação , Cristalografia por Raios X , Proteínas da Matriz Extracelular/genética , Feminino , Glicoproteínas/genética , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Proteólise
16.
Eur J Med Chem ; 152: 590-599, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29763807

RESUMO

Eradication of established biofilm communities of pathogenic bacteria is one of the pending challenges in the development of new antimicrobial agents. In particular, the dreaded nosocomial Pseudomonas aeruginosa forms microbial communities that offer an enhanced resistance to conventional antibiotics. Recently, we have described an engineered antimicrobial peptide derived from the human RNase3, also named the eosinophil cationic protein (ECP), RN3 (5-36), which combines bactericidal activity with high cell agglutination and lipopolysaccharide (LPS) affinity. Through a single replacement scan library using the SPOT methodology we have evaluated both the contribution of sequence positioning and amino acid singularity towards the peptide biological and physicochemical properties. Results indicate that the ECP N-terminus has already been extensively improved through evolution to provide high antimicrobial activity; hence most substitutions improving its antimicrobial performance are in detriment of safety towards host tissues. Only three positions were identified, occupied by polar residues on the first α-helix of the protein and replaceable by a hydrophobic residue, allowing an extended N-terminal patch that mediates bacterial agglutination. Among the best candidates, an Ile replacement proved best in improving the peptide therapeutic window. The novel engineered peptides encompass both the LPS-binding and aggregation-prone regions of parental ECP, providing the appropriate structural features for peptide attachment to the bacterial exopolysaccharide layer and bacterial cell membrane destabilization, thereby promoting biofilm removal at micro molar concentrations. We conclude that the novel engineered peptides are promising lead candidates against Gram-negative biofilms.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Proteína Catiônica de Eosinófilo/antagonistas & inibidores , Biblioteca de Peptídeos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Catiônica de Eosinófilo/metabolismo , Células Hep G2 , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Estrutura Molecular , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
17.
J R Soc Interface ; 14(136)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29187635

RESUMO

Lipopolysaccharides (LPSs) and glycosaminoglycans (GAGs) are polymeric structures containing negatively charged disaccharide units that bind to specialized proteins and peptides in the human body and control fundamental processes such as inflammation and coagulation. Surprisingly, some proteins can bind both LPSs and GAGs with high affinity, suggesting that a cross-communication between these two pathways can occur. Here, we explore whether GAGs and LPSs can share common binding sites in proteins and what are the structural determinants of this binding. We found that the LPS-binding peptide YI12WF, derived from protein FhuA, can bind both heparin and E. coli LPS with high affinity. Most interestingly, mutations decreasing heparin binding in the peptide also reduce LPS affinity. We show that such mutations involve the CPC clip motif in the peptide, a small three-dimensional signature required for heparin binding. Overall, we conclude that negatively charged polysaccharide-containing polymers such as GAGs and LPSs can compete for similar binding sites in proteins, and that the CPC clip motif is essential to bind both ligands. Our results provide a structural framework to explain why these polymers can cross-interact with the same proteins and peptides and thus contribute to the regulation of apparently unrelated processes in the body.


Assuntos
Motivos de Aminoácidos , Glicosaminoglicanos/química , Lipopolissacarídeos/química , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Calorimetria , Proteínas de Escherichia coli/química , Glicosaminoglicanos/metabolismo , Heparina/química , Heparina/metabolismo , Lipopolissacarídeos/metabolismo , Ligação Proteica , Domínios Proteicos
18.
Front Immunol ; 8: 1499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163551

RESUMO

Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.

19.
Structure ; 25(3): 530-535, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28132784

RESUMO

Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin-binding fragment of mouse laminin-111, consisting of ∼50 residues of α1ß1γ1 coiled coil and the first three laminin G-like (LG) domains of the α1 chain. The LG domains adopt a triangular arrangement, with the C terminus of the coiled coil situated between LG1 and LG2. The critical integrin-binding glutamic acid residue in the γ1 chain tail is surface exposed and predicted to bind to the metal ion-dependent adhesion site in the integrin ß1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ1 chain tail, which are notably conserved and free of obstructing glycans.


Assuntos
Integrinas/metabolismo , Laminina/química , Laminina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Adesão Celular , Linhagem Celular , Sequência Conservada , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
20.
Matrix Biol ; 57-58: 204-212, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27425256

RESUMO

Laminins are a major constituent of all basement membranes. The polymerisation of laminins at the cell surface is mediated by the three short arms of the cross-shaped laminin heterotrimer. The short arms contain repeats of laminin-type epidermal growth factor-like (LE) domains, interspersed with globular domains of unknown function. A single LF domain is inserted between LE5 and LE6 of the laminin ß1 and ß2 chains. We report the crystal structure at 1.85Å resolution of the laminin ß2 LE5-LF-LE6 region. The LF domain consists of a ß-sandwich related to bacterial family 35 carbohydrate binding modules, and more distantly to the L4 domains present in the short arms of laminin α and γ chains. An α-helical region mediates the extensive interaction of the LF domain with LE5. The relative arrangement of LE5 and LE6 is very similar to that of consecutive LE domains in uninterrupted LE tandems. Fitting atomic models to a low-resolution structure of the first eight domains of the laminin ß1 chain determined by small-angle X-ray scattering suggests a deviation from the regular LE array at the LE4-LE5 junction. These results advance our understanding of laminin structure.


Assuntos
Vetores Genéticos/química , Laminina/química , Domínios e Motivos de Interação entre Proteínas , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Vetores Genéticos/metabolismo , Humanos , Laminina/genética , Laminina/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA