Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4522, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402234

RESUMO

The goals of this study are to describe machine learning techniques employing computer-vision movement algorithms to automatically evaluate infants' general movements (GMs) in the writhing stage. This is a retrospective study of infants admitted 07/2019 to 11/2021 to a level IV neonatal intensive care unit (NICU). Infant GMs, classified by certified expert, were analyzed in two-steps (1) determination of anatomic key point location using a NICU-trained pose estimation model [accuracy determined using object key point similarity (OKS)]; (2) development of a preliminary movement model to distinguish normal versus cramped-synchronized (CS) GMs using cosine similarity and autocorrelation of major joints. GMs were analyzed using 85 videos from 74 infants; gestational age at birth 28.9 ± 4.1 weeks and postmenstrual age (PMA) at time of video 35.9 ± 4.6 weeks The NICU-trained pose estimation model was more accurate (0.91 ± 0.008 OKS) than a generic model (0.83 ± 0.032 OKS, p < 0.001). Autocorrelation values in the lower limbs were significantly different between normal (5 videos) and CS GMs (5 videos, p < 0.05). These data indicate that automated pose estimation of anatomical key points is feasible in NICU patients and that a NICU-trained model can distinguish between normal and CS GMs. These preliminary data indicate that machine learning techniques may represent a promising tool for earlier CP risk assessment in the writhing stage and prior to hospital discharge.


Assuntos
Algoritmos , Movimento , Recém-Nascido , Lactente , Humanos , Projetos Piloto , Estudos Retrospectivos , Idade Gestacional
2.
Proc IEEE Int Symp Biomed Imaging ; 2020: 1659-1663, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34040694

RESUMO

Histologic diagnosis of Barrett's esophagus and esophageal malignancy via probe-based confocal laser endomicroscopy (pCLE) allows for real-time examination of epithelial architecture and targeted biopsy sampling. Although pCLE demonstrates high specificity, sensitivity remains low. This study employs deep learning architectures in order to improve the accuracy of pCLE in diagnosing esophageal cancer and its precursors. pCLE videos are curated and annotated as belonging to one of the three classes: squamous, Barrett's (intestinal metaplasia without dysplasia), or dysplasia. We introduce two novel video architectures, AttentionPooling and Multi-Module AttentionPooling deep networks, that outperform other models and demonstrate a high degree of explainability.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34046246

RESUMO

One of the greatest obstacles in the adoption of deep neural networks for new medical applications is that training these models typically require a large amount of manually labeled training samples. In this body of work, we investigate the semi-supervised scenario where one has access to large amounts of unlabeled data and only a few labeled samples. We study the performance of MixMatch and FixMatch-two popular semi-supervised learning methods-on a histology dataset. More specifically, we study these models' impact under a highly noisy and imbalanced setting. The findings here motivate the development of semi-supervised methods to ameliorate problems commonly encountered in medical data applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA