Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125177

RESUMO

Pullulan, a natural polysaccharide with unique biocompatibility and biodegradability, has gained prominence in nanomedicine. Its application in nanoparticle drug delivery systems showcases its potential for precision medicine. AIM OF STUDY: This scientific review aims to comprehensively discuss and summarize recent advancements in pullulan-based polymeric nanoparticles, focusing on their formulation, characterization, evaluation, and efficacy. METHODOLOGY: A search on Scopus, PubMed, and Google Scholar, using "Pullulan and Nanoparticle" as keywords, identified relevant articles in recent years. RESULTS: The literature search highlighted a diverse range of studies on the pullulan-based polymeric nanoparticles, including the success of high-selectivity hybrid pullulan-based nanoparticles for efficient boron delivery in colon cancer as the active targeting nanoparticle, the specific and high-efficiency release profile of the development of hyalgan-coated pullulan-based nanoparticles, and the design of multifunctional microneedle patches that incorporated pullulan-collagen-based nanoparticle-loaded antimicrobials to accelerate wound healing. These studies collectively underscore the versatility and transformative potential of pullulan-based polymeric nanoparticles in addressing biomedical challenges. CONCLUSION: Pullulan-based polymeric nanoparticles are promising candidates for innovative drug delivery systems, with the potential to overcome the limitations associated with traditional delivery methods.

2.
Antioxidants (Basel) ; 13(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39199182

RESUMO

Antioxidants are essential for reducing oxidative stress, protecting cells from damage, and supporting overall well-being. Functionalized mesoporous silica materials have garnered interest due to their flexible uses in diverse domains, such as drug delivery systems. This review aims to thoroughly examine and evaluate the progress made in utilizing functionalized mesoporous silica materials as a possible approach to enhancing antioxidant activity. The authors performed a thorough search of reliable databases, including Scopus, PubMed, Google Scholar, and Clarivate Web of Science, using precise keywords linked to functionalized mesoporous silica nanoparticles and antioxidants. The identified journals serve as the major framework for the main discussion in this study. Functionalized mesoporous silica nanoparticles have been reported to greatly enhance antioxidant activity by allowing for an increased loading capacity, controlled release behavior, the targeting of specific drugs, improved biocompatibility and safety, and enhanced penetration. The results emphasize the significant capacity of functionalized mesoporous silica (FSM) to bring about profound changes in a wide range of applications. FSM materials can be designed as versatile nanocarriers, integrating intrinsic antioxidant capabilities and augmenting the efficacy of current drugs, offering substantial progress in antioxidant therapies and drug delivery systems, as well as enhanced substance properties in the pharmaceutical field. Functionalized mesoporous silica materials are a highly effective method for enhancing antioxidant activity. They provide new opportunities for the advancement of cutting-edge treatments and materials in the field of antioxidant research. The significant potential of FSM materials to change drug delivery methods and improve substance properties highlights their crucial role in future breakthroughs in the pharmaceutical field and antioxidant applications.

3.
Drug Deliv ; 29(1): 2959-2970, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36085575

RESUMO

Lung cancer is the second most common type of cancer after breast cancer. It ranks first in terms of mortality rate among all types of cancer. Lung cancer therapies are still being developed, one of which makes use of nanoparticle technology. However, conjugation with specific ligands capable of delivering drugs more precisely to cancer sites is still required to enhance nanoparticle targeting performance. Monoclonal antibodies are one type of mediator that can actively target nanoparticles. Due to the large number of antigens on the surface of cancer cells, monoclonal antibodies are widely used to deliver nanoparticles and improve drug targeting to cancer cells. Unfortunately, these antibodies have some drawbacks, such as rapid elimination, which results in a short half-life and ineffective dose. As a result, many of them are formulated in nanoparticles to minimize their major drawbacks and enhance drug targeting. This review summarizes and discusses articles on developing and applying various types of monoclonal antibody ligand nanoparticles as lung cancer target drugs. This review will serve as a guide for the choice of nanoparticle systems containing monoclonal antibody ligands for drug delivery in lung cancer therapy.


Assuntos
Antineoplásicos Imunológicos , Neoplasias Pulmonares , Nanopartículas , Anticorpos Monoclonais , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico
4.
Polymers (Basel) ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36015667

RESUMO

Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan-hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan-hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.

5.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199586

RESUMO

Natural polymer is a frequently used polymer in various food applications and pharmaceutical formulations due to its benefits and its biocompatibility compared to synthetic polymers. One of the natural polymer groups (i.e., polysaccharide) does not only function as an additive in pharmaceutical preparations, but also as an active ingredient with pharmacological effects. In addition, several natural polymers offer potential distinct applications in gene delivery and genetic engineering. However, some of these polymers have drawbacks, such as their lack of water retention and elasticity. Sacran, one of the high-molecular-weight natural polysaccharides (megamolecular polysaccharides) derived from Aphanothece sacrum (A. sacrum), has good water retention and elasticity. Historically, sacran has been used as a dietary food. Moreover, sacran can be applied in biomedical fields as an active material, excipient, and genetic engineering material. This article discusses the characteristics, extraction, isolation procedures, and the use of sacran in food and biomedical applications.


Assuntos
Cianobactérias/química , Polissacarídeos/química , Animais , Indústria Farmacêutica , Elasticidade , Indústria Alimentícia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA