Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026748

RESUMO

Targeted protein degradation (TPD) modulates protein function beyond inhibition of enzyme activity or protein-protein interactions. Most degraders function by proximity induction, and directly bridge an E3 ligase with the target to be degraded. However, many proteins might not be addressable via proximity-based degraders, and other challenges, such as resistance acquisition, exist. Here, we identified pseudo-natural products derived from (-)-myrtanol, termed iDegs, that inhibit and induce degradation of the immunomodulatory enzyme indoleamine-2,3-dioxygenase 1 (IDO1) by a distinct mechanism. iDegs induce a unique conformational change and, thereby, boost IDO1 ubiquitination and degradation by the cullin-RING E3 ligase CRL2KLHDC3, which we identified to also mediate native IDO1 degradation. Therefore, iDegs supercharge the native proteolytic pathway of IDO1, rendering this mechanism of action distinct from traditional degrader approaches involving proteolysis-targeting chimeras (PROTACs) or molecular-glue degraders (MGDs). In contrast to clinically explored IDO1 inhibitors, iDegs reduce formation of kynurenine by both inhibition and induced degradation of the enzyme and should also modulate non-enzymatic functions of IDO1. This unique mechanism of action may open up new therapeutic opportunities for the treatment of cancer beyond classical inhibition of IDO1.

2.
Angew Chem Int Ed Engl ; 60(18): 9869-9874, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33565680

RESUMO

The immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO1) strengthens cancer immune escape, and inhibition of IDO1 by means of new chemotypes and mechanisms of action is considered a promising opportunity for IDO1 inhibitor discovery. IDO1 is a cofactor-binding, redox-sensitive protein, which calls for monitoring of IDO1 activity in its native cellular environment. We developed a new, robust fluorescence-based assay amenable to high throughput, which detects kynurenine in cells. Screening of a ca. 150 000-member compound library discovered unprecedented, potent IDO1 modulators with different mechanisms of action, including direct IDO1 inhibitors, regulators of IDO1 expression, and inhibitors of heme synthesis. Three IDO1-modulator chemotypes were identified that bind to apo-IDO1 and compete with the heme cofactor. Our new cell-based technology opens up novel opportunities for medicinal chemistry programs in immuno-oncology.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Linhagem Celular Tumoral , Cumarínicos/química , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA