Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394078

RESUMO

Global refugee and migrant flows form complex networks with serious consequences for both sending and receiving countries as well as those in between. While several basic network properties of these networks have been documented, their finer structural character remains under-studied. One such structure is the triad significance profile (TSP). In this study, the TSPs of global refugee and migrant flow networks are assessed. Results indicate that the migrant flow network's size and TSP remain stable over the years; its TSP shares patterns with social networks such as trade networks. In contrast, the refugee network has been more dynamic and structurally unstable; its TSP shares patterns with networks in the information-processing superfamily, which includes many biological networks. Our findings demonstrate commonality between migrant and social networks as well as between refugee and biological networks, pointing to possible interdisciplinary collaboration-e.g., application of biological network theories to refugee network dynamics-, potentially furthering theoretical development with respect to both network theory and theories on human mobility.


Assuntos
Migrantes , Humanos
2.
Nat Food ; 4(7): 607-615, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37474801

RESUMO

The agricultural and food systems of the United States are critical for ensuring the stability of both domestic and global food systems. Thus, it is essential to understand the structural resilience of the country's agri-food supply chains to a suite of threats. Here we employ complex network statistics to identify the spatially resolved structural chokepoints in the agri-food supply chains of the United States. We identify seven chokepoints at county scale: Riverside CA, San Bernardino CA, Los Angeles CA, Shelby TN, Maricopa AZ, San Diego CA and Cook IL; as well as seven chokepoints at freight analysis framework scale: Los Angeles-Long Beach CA, Chicago-Naperville IL, New York-New Jersey NJ, New York-New Jersey NY, Remainder of Texas, Remainder of Pennsylvania, and San Jose-San Francisco-Oakland CA. These structural chokepoints are generally consistent through time (2007, 2012, 2017), particularly for processed food commodities. This study improves our understanding of agri-food supply-chain security and may aid policies aimed at enhancing its resilience.


Assuntos
Abastecimento de Alimentos , Políticas , Estados Unidos , New Jersey , Pennsylvania , Texas
3.
Sci Rep ; 13(1): 3583, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869041

RESUMO

Although extreme weather events recur periodically everywhere, the impacts of their simultaneous occurrence on crop yields are globally unknown. In this study, we estimate the impacts of combined hot and dry extremes as well as cold and wet extremes on maize, rice, soybean, and wheat yields using gridded weather data and reported crop yield data at the global scale for 1980-2009. Our results show that co-occurring extremely hot and dry events have globally consistent negative effects on the yields of all inspected crop types. Extremely cold and wet conditions were observed to reduce crop yields globally too, although to a lesser extent and the impacts being more uncertain and inconsistent. Critically, we found that over the study period, the probability of co-occurring extreme hot and dry events during the growing season increased across all inspected crop types; wheat showing the largest, up to a six-fold, increase. Hence, our study highlights the potentially detrimental impacts that increasing climate variability can have on global food production.


Assuntos
Clima , Tempo (Meteorologia) , Estações do Ano , Probabilidade , Temperatura Baixa , Triticum
4.
J Geophys Res Atmos ; 126(5): e2020JD034108, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-34513547

RESUMO

Biophysical vegetation responses to elevated atmospheric carbon dioxide (CO2) affect regional hydroclimate through two competing mechanisms. Higher CO2 increases leaf area (LAI), thereby increasing transpiration and water losses. Simultaneously, elevated CO2 reduces stomatal conductance and transpiration, thereby increasing rootzone soil moisture. Which mechanism dominates in the future is highly uncertain, partly because these two processes are difficult to explicitly separate within dynamic vegetation models. We address this challenge by using the GISS ModelE global climate model to conduct a novel set of idealized 2×CO2 sensitivity experiments to: evaluate the total vegetation biophysical contribution to regional climate change under high CO2; and quantify the separate contributions of enhanced LAI and reduced stomatal conductance to regional hydroclimate responses. We find that increased LAI exacerbates soil moisture deficits across the sub-tropics and more water-limited regions, but also attenuates warming by ∼0.5-1°C in the US Southwest, Central Asia, Southeast Asia, and northern South America. Reduced stomatal conductance effects contribute ∼1°C of summertime warming. For some regions, enhanced LAI and reduced stomatal conductance produce nonlinear and either competing or mutually amplifying hydroclimate responses. In northeastern Australia, these effects combine to exacerbate radiation-forced warming and contribute to year-round water limitation. Conversely, at higher latitudes these combined effects result in less warming than would otherwise be predicted due to nonlinear responses. These results highlight substantial regional variation in CO2-driven vegetation responses and the importance of improving model representations of these processes to better quantify regional hydroclimate impacts.

5.
Nat Food ; 2(1): 11-14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37117657

RESUMO

Global food security is threatened by the effects of COVID-19 on international agricultural supply chains and locusts destroying crops and livelihoods in the Horn of Africa and South Asia. We quantify the possible impacts on global supplies and prices of wheat, rice and maize. We show that local production declines have moderate impacts on global prices and supply-but trade restrictions and precautionary purchases by a few key actors could create global food price spikes and severe local food shortages.

6.
J Adv Model Earth Syst ; 12(8): e2019MS002025, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999704

RESUMO

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden-Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7-3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

7.
Proc Natl Acad Sci U S A ; 117(13): 7071-7081, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179678

RESUMO

A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.


Assuntos
Clima , Grão Comestível , Abastecimento de Alimentos , Modelos Biológicos , Guerra Nuclear , Glycine max
8.
J Clim ; 32(2): 465-484, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699488

RESUMO

Modern agricultural land cover and management are important as regional climate forcings. Previous work has shown that land cover change can significantly impact key climate variables, including turbulent fluxes, precipitation, and surface temperature. However, fewer studies have investigated how intensive crop management can impact background climate conditions, such as the strength of land-atmosphere coupling and evaporative regime. We conduct sensitivity experiments using a state-of-the-art climate model with modified vegetation characteristics to represent modern crop cover and management, using observed crop-specific leaf area indexes and calendars. We quantify changes in land-atmosphere interactions and climate over intensively cultivated regions situated at transitions between moisture- and energy-limited conditions. Results show that modern intensive agriculture has significant and geographically varying impacts on regional evaporative regimes and background climate conditions. Over the northern Great Plains, modern crop intensity increases the model simulated precipitation and soil moisture, weakening hydrologic coupling by increasing surface water availability and reducing moisture limits on evapotranspiration. In the U.S. Midwest, higher growing season evapotranspiration, coupled with winter and spring rainfall declines, reduces regional soil moisture, while crop albedo changes also reduce net surface radiation. This results overall in reduced dependency of regional surface temperature on latent heat fluxes. In central Asia, a combination of reduced net surface energy and enhanced pre-growing season precipitation amplify the energy-limited evaporative regime. These results highlight the need for improved representations of agriculture in global climate models to better account for regional climate impacts and interactions with other anthropogenic forcings.

9.
Nat Commun ; 9(1): 1257, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593219

RESUMO

The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter 2015-2016, leading to food insecurity in many parts of Africa, Asia and Latin America. Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are known to impact crop yields worldwide. Here we assess for the first time in a unified framework the relationships between ENSO, IOD and NAO and simulated crop productivity at the sub-country scale. Our findings reveal that during 1961-2010, crop productivity is significantly influenced by at least one large-scale climate oscillation in two-thirds of global cropland area. Besides observing new possible links, especially for NAO in Africa and the Middle East, our analyses confirm several known relationships between crop productivity and these oscillations. Our results improve the understanding of climatological crop productivity drivers, which is essential for enhancing food security in many of the most vulnerable places on the planet.

10.
J Geophys Res Atmos ; 123(21): 12017-12039, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30775192

RESUMO

Anthropogenic land use and land cover change is primarily represented in climate model simulations through prescribed transitions from natural vegetation to cropland or pasture. However, recent studies have demonstrated that land management practices, especially irrigation, have distinct climate impacts. Here we disentangle the seasonal climate impacts of land cover change and irrigation across areas of high agricultural intensity using climate simulations with three different land surface scenarios: (1) natural vegetation cover/no irrigation, (2) year 2000 crop cover/no irrigation, and (3) year 2000 crop cover and irrigation rates. We find that irrigation substantially amplifies land cover-induced climate impacts but has opposing effects across certain regions. Irrigation mostly causes surface cooling, which substantially amplifies land cover change-induced cooling in most regions except over Central, West, and South Asia, where it reverses land cover change-induced warming. Despite increases in net surface radiation in some regions, this cooling is associated with enhancement of latent relative to sensible heat fluxes by irrigation. Similarly, irrigation substantially enhances the wetting influence of land cover change over several regions including West Asia and the Mediterranean. The most notable contrasting impacts of these forcings on precipitation occur over South Asia, where irrigation offsets the wetting influence of land cover during the monsoon season. Differential changes in regional circulations and moist static energy induced by these forcings contribute to their precipitation impacts and are associated with differential changes in surface and tropospheric temperature gradients and moisture availability. These results emphasize the importance of including irrigation forcing to evaluate the combined impacts of land surface changes for attributing historical climatic changes and managing future impacts.

11.
Nature ; 553(7688): 366, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29186114

RESUMO

This corrects the article DOI: 10.1038/nature21403.

12.
Nature ; 543(7647): 700-704, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358074

RESUMO

Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world's food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world's population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.


Assuntos
Comércio , Produção Agrícola/economia , Abastecimento de Alimentos/economia , Água Subterrânea/análise , Internacionalidade , Abastecimento de Água/economia , Abastecimento de Água/estatística & dados numéricos , Irrigação Agrícola/economia , Irrigação Agrícola/estatística & dados numéricos , China , Comércio/economia , Comércio/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Produção Agrícola/estatística & dados numéricos , Abastecimento de Alimentos/estatística & dados numéricos , Índia , Irã (Geográfico) , México , Paquistão , Estados Unidos
13.
Environ Res Lett ; 12(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32818038

RESUMO

Ensuring food security requires food production and distribution systems function throughout disruptions. Understanding the factors that contribute to the global food system's ability to respond and adapt to such disruptions (i.e. resilience) is critical for understanding the long-term sustainability of human populations. Variable impacts of production shocks on food supply between countries indicate a need for national-scale resilience indicators that can provide global comparisons. However, methods for tracking changes in resilience have had limited application to food systems. We developed an indicator-based analysis of food systems resilience for the years 1992-2011. Our approach is based on three dimensions of resilience: socio-economic access to food in terms of income of the poorest quintile relative to food prices, biophysical capacity to intensify or extensify food production, and the magnitude and diversity of current domestic food production. The socio-economic indicator has large variability, but with low values concentrated in Africa and Asia. The biophysical capacity indicator is highest in Africa and Eastern Europe, in part because of high potential for extensification of cropland and for yield gap closure in cultivated areas. However, the biophysical capacity indicator has declined globally in recent years. The production diversity indicator has increased slightly, with a relatively even geographic distribution. Few countries had exclusively high or low values for all indicators. Collectively, these results are the basis for global comparisons of resilience between nations, and provide necessary context for developing generalizations about the resilience in the global food system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA