Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 529, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904124

RESUMO

BACKGROUND: In hexaploid wheat, quantitative trait loci (QTL) and meta-QTL (MQTL) analyses were conducted to identify genomic regions controlling resistance to cereal cyst nematode (CCN), Heterodera avenae. A mapping population comprising 149 RILs derived from the cross HUW 468 × C 306 was used for composite interval mapping (CIM) and inclusive composite interval mapping (ICIM). RESULTS: Eight main effect QTLs on three chromosomes (1B, 2A and 3A) were identified using two repeat experiments. One of these QTLs was co-localized with a previously reported wheat gene Cre5 for resistance to CCN. Seven important digenic epistatic interactions (PVE = 5% or more) were also identified, each involving one main effect QTL and another novel E-QTL. Using QTLs earlier reported in literature, two meta-QTLs were also identified, which were also used for identification of 57 candidate genes (CGs). Out of these, 29 CGs have high expression in roots and encoded the following proteins having a role in resistance to plant parasitic nematodes (PPNs): (i) NB-ARC,P-loop containing NTP hydrolase, (ii) Protein Kinase, (iii) serine-threonine/tyrosine-PK, (iv) protein with leucine-rich repeat, (v) virus X resistance protein-like, (vi) zinc finger protein, (vii) RING/FYVE/PHD-type, (viii) glycosyl transferase, family 8 (GT8), (ix) rubisco protein with small subunit domain, (x) protein with SANT/Myb domain and (xi) a protein with a homeobox. CONCLUSION: Identification and selection of resistance loci with additive and epistatic effect along with two MQTL and associated CGs, identified in the present study may prove useful for understanding the molecular basis of resistance against H. avenae in wheat and for marker-assisted selection (MAS) for breeding CCN resistant wheat cultivars.


Assuntos
Locos de Características Quantitativas , Tylenchoidea , Animais , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/parasitologia , Melhoramento Vegetal , Fenótipo
2.
Sci Rep ; 13(1): 5916, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041155

RESUMO

Cereal cyst nematode (CCN) is a major threat to cereal crop production globally including wheat (Triticum aestivum L.). In the present study, single-locus and multi-locus models of Genome-Wide Association Study (GWAS) were used to find marker trait associations (MTAs) against CCN (Heterodera avenae) in wheat. In total, 180 wheat accessions (100 spring and 80 winter types) were screened against H. avenae in two independent years (2018/2019 "Environment 1" and 2019/2020 "Environment 2") under controlled conditions. A set of 12,908 SNP markers were used to perform the GWAS. Altogether, 11 significant MTAs, with threshold value of -log10 (p-values) ≥ 3.0, were detected using 180 wheat accessions under combined environment (CE). A novel MTA (wsnp_Ex_c53387_56641291) was detected under all environments (E1, E2 and CE) and considered to be stable MTA. Among the identified 11 MTAs, eight were novel and three were co-localized with previously known genes/QTLs/MTAs. In total, 13 putative candidate genes showing differential expression in roots, and known to be involved in plant defense mechanisms were reported. These MTAs could help us to identify resistance alleles from new sources, which could be used to identify wheat varieties with enhanced CCN resistance.


Assuntos
Cistos , Nematoides , Animais , Triticum/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genômica , Nematoides/genética
3.
Mol Genet Genomics ; 298(3): 579-601, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36884084

RESUMO

Significant yield losses in major cereal-growing regions around the world have been linked to cereal cyst nematodes (Heterodera spp.). Identifying and deploying natural sources of resistance is of utmost importance due to increasing concerns associated with chemical methods over the years. We screened 141 diverse wheat genotypes collected from pan-Indian wheat cultivation states for nematode resistance over two years, alongside two resistant (Raj MR1, W7984 (M6)) and two susceptible (WH147, Opata M85) checks. We performed genome-wide association analysis using four single-locus models (GLM, MLM, CMLM, and ECMLM) and three multi-locus models (Blink, FarmCPU, and MLMM). Single locus models identified nine significant MTAs (-log10 (P) > 3.0) on chromosomes 2A, 3B, and 4B whereas, multi-locus models identified 11 significant MTAs on chromosomes 1B, 2A, 3B, 3D and 4B. Single and multi-locus models identified nine common significant MTAs. Candidate gene analysis identified 33 genes like F-box-like domain superfamily, Cytochrome P450 superfamily, Leucine-rich repeat, cysteine-containing subtype Zinc finger RING/FYVE/PHD-type, etc., having a putative role in disease resistance. Such genetic resources can help to reduce the impact of this disease on wheat production. Additionally, these results can be used to design new strategies for controlling the spread of H. avenae, such as the development of resistant varieties or the use of resistant cultivars. Finally, the obtained results can also be used to identify new sources of resistance to this pathogen and develop novel control methods.


Assuntos
Cistos , Tylenchoidea , Animais , Triticum/genética , Estudo de Associação Genômica Ampla , Grão Comestível/genética , Tylenchoidea/genética
4.
Sci Rep ; 12(1): 9586, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688926

RESUMO

The resistance to cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.) was studied using 114 doubled haploid lines from a novel ITMI mapping population. These lines were screened for nematode infestation in a controlled environment for two years. QTL-mapping analyses were performed across two years (Y1 and Y2) as well as combining two years (CY) data. On the 114 lines that were screened, a total of 2,736 data points (genotype, batch or years, and replication combinations) were acquired. For QTL analysis, 12,093 markers (11,678 SNPs and 415 SSRs markers) were used, after filtering the genotypic data, for the QTL mapping. Composite interval mapping, using Haley-Knott regression (hk) method in R/QTL, was used for QTL analysis. In total, 19 QTLs were detected out of which 13 were novel and six were found to be colocalized or nearby to previously reported Cre genes, QTLs or MTAs for H. avenae or H. filipjevi. Nine QTLs were detected across all three groups (Y1, Y2 and CY) including a significant QTL "QCcn.ha-2D" on chromosome 2D that explains 23% of the variance. This QTL colocalized with a previously identified Cre3 locus. Novel QTL, QCcn.ha-2A, detected in the present study could be the possible unreported homeoloci to QCcn.ha-2D, QCcn.ha-2B.1 and QCcn.ha-2B.2. Six significant digenic epistatic interactions were also observed. In addition, 26 candidate genes were also identified including genes known for their involvement in PPNs (plant parasitic nematodes) resistance in different plant species. In-silico expression of putative candidate genes showed differential expression in roots during specific developmental stages. Results obtained in the present study are useful for wheat breeding to generate resistant genetic resources against H. avenae.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Grão Comestível , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Triticum/genética , Triticum/parasitologia , Tylenchoidea/genética
6.
Mol Genet Genomics ; 296(5): 1051-1056, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115214

RESUMO

During the last three decades, QTL analysis in wheat has been conducted for a variety of individual traits, so that thousands of QTL along with the linked markers, their genetic positions and contribution to phenotypic variation (PV) for concerned traits are now known. However, no exhaustive database for wheat QTL is currently available at a single platform. Therefore, the present database was prepared which is an exhaustive information resource for wheat QTL data from the published literature till May, 2020. QTL data from both interval mapping and genome-wide association studies (GWAS) have been included for the following classes of traits: (i) morphological traits, (ii) N and P use efficiency, (iii) traits for biofortification (Fe, K, Se, and Zn contents), (iv) tolerance to abiotic stresses including drought, water logging, heat stress, pre-harvest sprouting and salinity, (v) resistance to biotic stresses including those due to bacterial, fungal, nematode and insects, (vi) quality traits, and (vii) a variety of physiological traits, (viii) developmental traits, and (ix) yield and its related traits. For the preparation of the database, literature was searched for data on QTL/marker-trait associations (MTAs), curated and then assembled in the form of WheatQTLdb. The available information on metaQTL, epistatic QTL and candidate genes, wherever available, is also included in the database. Information on QTL in this WheatQTLdb includes QTL names, traits, associated markers, parental genotypes, crosses/mapping populations, association mapping panels and other useful information. To our knowledge, WheatQTLdb prepared by us is the largest collection of QTL (11,552), epistatic QTL (107) and metaQTL (330) data for hexaploid wheat to be used by geneticists and plant breeders for further studies involving fine mapping, cloning, and marker-assisted selection (MAS) during wheat breeding.


Assuntos
Bases de Dados Genéticas , Locos de Características Quantitativas , Triticum/genética , Epistasia Genética , Internet , Interface Usuário-Computador
7.
Sci Rep ; 11(1): 3572, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574377

RESUMO

Root lesion nematode (RLN; Pratylenchus thornei) causes extensive yield losses in wheat worldwide and thus pose serious threat to global food security. Reliance on fumigants (such as methyl bromide) and nematicides for crop protection has been discouraged due to environmental concerns. Hence, alternative environment friendly control measures like finding and deployment of resistance genes against Pratylenchus thornei are of significant importance. In the present study, genome-wide association study (GWAS) was performed using single-locus and multi-locus methods. In total, 143 wheat genotypes collected from pan-Indian wheat cultivation states were used for nematode screening. Genotypic data consisted of  > 7K SNPs with known genetic positions on the high-density consensus map was used for association analysis. Principal component analysis indicated the existence of sub-populations with no major structuring of populations due to the origin. Altogether, 25 significant marker trait associations were detected with - log10 (p value) > 4.0. Three large linkage disequilibrium blocks and the corresponding haplotypes were found to be associated with significant SNPs. In total, 37 candidate genes with nine genes having a putative role in disease resistance (F-box-like domain superfamily, Leucine-rich repeat, cysteine-containing subtype, Cytochrome P450 superfamily, Zinc finger C2H2-type, RING/FYVE/PHD-type, etc.) were identified. Genomic selection was conducted to investigate how well one could predict the phenotype of the nematode count without performing the screening experiments. Prediction value of r = 0.40 to 0.44 was observed when 56 to 70% of the population was used as a training set. This is the first report where GWAS has been conducted to find resistance against root lesion nematode (P. thornei) in Indian wheat germplasm.


Assuntos
Estudo de Associação Genômica Ampla , Nematoides/genética , Raízes de Plantas/genética , Triticum/genética , Animais , Genoma de Planta/genética , Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Triticum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA