Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(20): 4068-4081, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37740492

RESUMO

Plasma membrane-induced protein folding and conformational transitions play a central role in cellular homeostasis. Several transmembrane proteins are folded in the complex lipid milieu to acquire a specific structure and function. Bacterial pore forming toxins (PFTs) are proteins expressed by a large class of pathogenic bacteria that exploit the plasma membrane environment to efficiently undergo secondary structure changes, oligomerize, and form transmembrane pores. Unregulated pore formation causes ion imbalance, leading to cell death and infection. Determining the free energy landscape of these membrane-driven-driven transitions remains a challenging problem. Although cholesterol recognition is required for lytic activity of several proteins in the PFT family of toxins, the regulatory role of cholesterol for the α-PFT, cytolysin A expressed by Escherichia coli remains unexplained. In a recent free energy computation, we showed that the ß tongue, a critical membrane-inserted motif of the ClyA toxin, has an on-pathway partially unfolded intermediate that refolds into the helix-turn-helix motif of the pore state. To understand the molecular role played by cholesterol, we carry out string-method-based computations in membranes devoid of cholesterol, which reveals an increase of ∼30 times in the free energy barrier for the loss of ß sheet secondary structure when compared with membranes containing cholesterol. Specifically, the tyrosine-cholesterol interaction was found to be critical to creating the unfolded intermediate. Cholesterol also increases the packing and hydrophobicity of the bilayer, resulting in enhanced interactions of the bound protein before complete membrane insertion. Our study illustrates that cholesterol is critical to catalyzing and stabilizing the membrane-inserted unfolded state of the ß tongue motif of ClyA, opening up fresh insights into cholesterol-assisted unfolding of membrane proteins.


Assuntos
Toxinas Bacterianas , Escherichia coli , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Porinas/metabolismo , Estrutura Secundária de Proteína , Citotoxinas/análise , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Colesterol/metabolismo
2.
J Phys Chem B ; 127(1): 69-84, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542809

RESUMO

Several bacterial infections are mediated by pore-forming toxins (PFTs), a subclass of proteins that oligomerize on mammalian cell membranes forming lytic nanopores. Cytolysin A (ClyA), an α-PFT, undergoes a dramatic conformational change restructuring its two membrane-binding motifs (the ß-tongue and the N-terminus helix), during pore formation. A complete molecular picture for this key transition and the driving force behind the secondary structure change upon membrane binding remain elusive. Using all-atom molecular dynamics (MD) simulations of the ClyA monomer and string method based free energy computations with path collective variables, we illustrate that an unfolded ß-tongue motif is an on-pathway intermediate during the transition to the helix-turn-helix motif of the protomer. An aggregate of 28 µs of all-atom thermal unfolding MD simulations of wild-type ClyA and its single point mutants reveal that the membrane-binding motifs of the ClyA protein display high structural flexibility in water. However, point mutations in these motifs lead to a distinct reduction in the flexibility, especially in the ß-tongue, thereby stabilizing the pretransition secondary structure. Resistance to unfolding was further corroborated by MD simulations of the ß-tongue mutant motif in the membrane. Combined with the thermal unfolding simulations, we posit that the ß-tongue as well as N-terminal mutants that lower the tendency to unfold and disorder the ß-tongue are detrimental to pore formation by ClyA and its lytic activity. Erythrocyte turbidity and vesicle leakage assays indeed reveal a loss of activity for the ß-tongue mutant, and delayed kinetics for the N-terminus mutants. On the other hand, a point mutation in the extracellular domain that did not abrogate lytic activity displayed similar unfolding characteristics as the wild type. Thus, attenuation of conformational flexibility in membrane-binding motifs correlates with reduced lytic and leakage activity. Combined with secondary structure changes observed in the membrane bound states, our study shows that the tendency to unfold in the ß-tongue region is a critical step in the conformational transition and bistability of the ClyA protein and mutants that disrupt this tendency reduced pore formation. Overall, our finding suggests that inherent flexibility in the protein could play a wider and hitherto unrecognized role in membrane-mediated conformational transitions of PFTs and other membrane protein transformations.


Assuntos
Proteínas de Escherichia coli , Animais , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Porinas/metabolismo , Estrutura Secundária de Proteína , Citotoxinas , Mamíferos/metabolismo
3.
J Chem Phys ; 157(13): 134705, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209002

RESUMO

Wettability of rock surfaces with respect to oil and water, which is characterized by the contact angle, is an important factor that determines the efficacy of enhanced oil recovery operations. Experimental determination of contact angles for oil-water-rock systems is expensive and time-consuming due to the extremely long times needed for the establishment of adsorption equilibrium at the liquid-solid interface. Hence, molecular simulations form an attractive tool for computing contact angles. In this work, we use the cleaving wall technique that was developed previously in our group [R. K. R. Addula and S. N. Punnathanam, J. Chem. Phys. 153, 154504 (2020)] to compute solid-liquid interfacial free energy, which is then combined with Young's equation to compute the oil-water contact angle on silica surfaces. The silica surface is modeled with the INTERFACE force field that has been developed to accurately reproduce experimental data. We have considered three different surface chemistries of silica, namely, Q2, Q3, and Q4, in this study. Our calculations reveal that while the Q2 and Q3 surfaces are completely wetted by water, the Q4 surface is partially non-wetted by water. All the simulations needed for this calculation can be performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular package. This should facilitate wider adoption of the Young's equation route to compute contact angles for systems comprised of complex molecules.

4.
Soft Matter ; 18(39): 7593-7603, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165347

RESUMO

The transition of an α-helix to a ß-sheet in proteins is among the most complex conformational changes seen in biomolecular systems. Due to long time scales involved in the transition, it is challenging to study such protein conformational changes using direct molecular dynamics simulations. This limitation is typically overcome using an indirect approach wherein one computes the free energy landscape associated with the transition. Computation of free energy landscapes, however, requires a suitable set of collective variables that describe the transition. In this work, we demonstrate the use of path collective variables [D. Branduardi, F. L. Gervasio and M. Parrinello, J. Chem. Phys., 2007, 126, 054103] and combine it with the finite temperature string (FTS) method [E. Weinan, W. Ren and E. Vanden-Eijnden, J. Phys. Chem. B, 2005, 109, 6688-6693] to determine the molecular mechanisms involved during the structural transition of the mini G-protein from an α-helix to a ß-hairpin. The transition from the α-helix proceeds via unfolding of the terminal residues, giving rise to a ß-turn unfolded intermediate to eventually form the ß-hairpin. Our proposed algorithm uses umbrella sampling simulations to simulate images along the string and the weighted histogram analysis to compute the free energy along the computed transition path. This work demonstrates that the string method in combination with path collective variables can be exploited to study complex protein conformational changes such as a complete change in the secondary structure.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Entropia , Estrutura Secundária de Proteína , Temperatura , Termodinâmica
5.
Phys Rev Lett ; 126(14): 146001, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891434

RESUMO

In this Letter, we present a molecular theory of nucleation from dilute phases such as vapors or dilute solutions. The theory can model the nonclassical two-step crystal nucleation seen in many systems. When applied to study and analyze the crystal nucleation pathways from Lennard-Jones vapor, we find that prior explanations of the two-step mechanism based on lower barrier height for liquid nuclei is incomplete. The analysis from the molecular theory reveal that a complete explanation would also require consideration of anisotropy in the diffusion constants for growth of liquid droplets vis-á-vis the crystal nuclei.

6.
J Chem Phys ; 155(24): 244901, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972383

RESUMO

Ligand coated nanoparticles are complex objects consisting of a metallic or semiconductor core with organic ligands grafted on their surface. These organic ligands provide stability to a nanoparticle suspension. In solutions, the effective interactions between such nanoparticles are mediated through a complex interplay of interactions between the nanoparticle cores, the surrounding ligands, and the solvent molecules. While it is possible to compute these interactions using fully atomistic molecular simulations, such computations are too expensive for studying self-assembly of a large number of nanoparticles. The problem can be made tractable by removing the degrees of freedom associated with the ligand chains and solvent molecules and using the potentials of mean force (PMF) between nanoparticles. In general, the functional dependence of the PMF on the inter-particle distance is unknown and can be quite complex. In this article, we present a method to model the two-body and three-body PMF between ligand coated nanoparticles through a linear combination of symmetry functions. The method is quite general and can be extended to model interactions between different types of macromolecules.

7.
J Chem Phys ; 153(15): 154504, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092349

RESUMO

In this article, we present two methods based on thermodynamic integration for computing solid-fluid interfacial free energy for a molecular system. As a representative system, we choose two crystal polymorphs of orcinol (5-methylbenzene-1,3-diol) as the solid phase and chloroform and nitromethane as the liquid phase. The computed values of the interfacial free energy are then used in combination with the classical nucleation theory to predict solvent induced polymorph selectivity during crystallization of orcinol from solution.

8.
J Phys Chem B ; 124(41): 9195-9203, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32924482

RESUMO

Quaternary ammonium salts such as tetra-n-butyl ammonium bromide (TBAB) are known to form semiclathrate hydrates. Since they form at much milder conditions compared to gas hydrates, they have evoked much interest in development of new technologies for gas storage and gas separations. In this work, we present a method to compute the phase equilibrium of TBAB semiclathrate. The TBAB molecule is modeled using OPLS-AA and GAFF force fields and the results from simulations are compared with experimental data to determine the ability of the force fields to accurately predict the semiclathrate phase equilibria. It was observed that the OPLS-AA force field outperforms the GAFF force field in predicting the experimental phase equilibrium data.

9.
Langmuir ; 36(9): 2439-2448, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32069407

RESUMO

The antifreeze activity of a type-III antifreeze protein (AFP) expressed in ocean pout (Zoarces americanus) is compared with that of a specific mutant (T18N) using all-atom molecular dynamics simulations. The antifreeze activity of the mutant is only 10% of the wild-type AFP. The results from this simulation study revealed the following insights into the mechanism of antifreeze action by type-III AFPs. The AFP gets adsorbed to the advancing ice front due to its hydrophobic nature. A part of the hydrophobicity is caused by the presence of clathrate structure of water molecules near the ice-binding surface (IBS). The mutation in the AFP disrupts this structure and thereby reduces the ability of the mutant to adsorb to the ice-water interface leading to the loss of antifreeze activity. The mutation, however, has no effect on the ability of the adsorbed protein to bind to the growing ice phase. Simulations also revealed that all surfaces of the protein can bind to the ice phase, although the IBS is the preferred surface.


Assuntos
Proteínas Anticongelantes/metabolismo , Proteínas de Peixes/metabolismo , Água/metabolismo , Adsorção , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Perciformes , Ligação Proteica , Água/química
10.
J Chem Phys ; 153(6): 064902, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287453

RESUMO

Simple models for spherical particles with a soft shell have been shown to self-assemble into numerous crystal phases and even quasicrystals. However, most of these models rely on a simple pairwise interaction, which is usually a valid approximation only in the limit of small deformations, i.e., low densities. In this work, we consider a many-body yet simple model for the evaluation of the elastic energy associated with the deformation of a spherical shell. The resulting energy evaluation, however, is relatively expensive for direct use in simulations. We significantly reduce the associated numerical cost by fitting the potential using a set of symmetry functions. We propose a method for selecting a suitable set of symmetry functions that capture the most relevant features of the particle's environment in a systematic manner. The fitted interaction potential is then used in Monte Carlo simulations to draw the phase diagram of the system in two dimensions. The system is found to form both a fluid and a hexagonal crystal phase.

11.
J Chem Phys ; 147(6): 064504, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810784

RESUMO

Co-crystal formation from fluid-mixtures is quite common in a large number of systems. The simplest systems that show co-crystal (also called substitutionally ordered solids) formation are binary hard sphere mixtures. In this work, we study the nucleation of AB2 type solid compounds using Monte Carlo molecular simulations in binary hard sphere mixtures with the size ratio of 0.55. The conditions chosen for the study lie in the region where nucleation of an AB2 type solid competes with that of a pure A solid with a face-centered-cubic structure. The fluid phase composition is kept equal to that of the AB2 type solid. The nucleation free-energy barriers are computed using the seeding technique of Sanz et al. [J. Am. Chem. Soc. 135, 15008 (2013)]. Our simulation results show that the nucleation of the AB2 type solid is favored even under conditions where the pure A solid is more stable. This is primarily due to the similarity in the composition of the fluid phase and the AB2 type solid which in turn leads to much lower interfacial tension between the crystal nucleus and the fluid phase. This system is an example of how the fluid phase composition affects the structure of the nucleating solid phase during crystallization and has relevance to crystal polymorphism during crystallization processes.

15.
Faraday Discuss ; 186: 187-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26762687

RESUMO

The synthesis of high quality protein crystals is essential for determining their structure. Hence the development of strategies to facilitate the nucleation of protein crystals is of prime importance. Recently, Ghatak and Ghatak [Langmuir 2013, 29, 4373] reported heterogeneous nucleation of protein crystals on nano-wrinkled surfaces. Through a series of experiments on different proteins, they were able to obtain high quality protein crystals even at low protein concentrations and sometimes without the addition of a precipitant. In this study, the mechanism of protein crystal nucleation on nano-wrinkled surfaces is studied through Monte Carlo simulations. The wrinkled surface is modeled by a sinusoidal surface. Free-energy barriers for heterogeneous crystal nucleation on flat and wrinkled surfaces are computed and compared. The study reveals that the enhancement of nucleation is closely related to the two step nucleation process seen during protein crystallization. There is an enhancement of protein concentration near the trough of the sinusoidal surface which aids in nucleation. However, the high curvature at the trough acts as a deterrent to crystal nucleus formation. Hence, significant lowering of the free-energy barrier is seen only if the increase in the protein concentration at the trough is very high.


Assuntos
Cristalização/métodos , Proteínas/química , Modelos Químicos , Método de Monte Carlo , Nanoestruturas/química , Propriedades de Superfície , Termodinâmica
16.
J Chem Phys ; 140(17): 174110, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811628

RESUMO

Current methods for molecular simulations of Electric Double Layer Capacitors (EDLC) have both the electrodes and the electrolyte region in a single simulation box. This necessitates simulation of the electrode-electrolyte region interface. Typical capacitors have macroscopic dimensions where the fraction of the molecules at the electrode-electrolyte region interface is very low. Hence, large systems sizes are needed to minimize the electrode-electrolyte region interfacial effects. To overcome these problems, a new technique based on the Gibbs Ensemble is proposed for simulation of an EDLC. In the proposed technique, each electrode is simulated in a separate simulation box. Application of periodic boundary conditions eliminates the interfacial effects. This in addition to the use of constant voltage ensemble allows for a more convenient comparison of simulation results with experimental measurements on typical EDLCs.

18.
J Chem Phys ; 138(17): 174503, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23656140

RESUMO

In this study, the free energy barriers for homogeneous crystal nucleation in a system that exhibits a eutectic point are computed using Monte Carlo simulations. The system studied is a binary hard sphere mixture with a diameter ratio of 0.85 between the smaller and larger hard spheres. The simulations of crystal nucleation are performed for the entire range of fluid compositions. The free energy barrier is found to be the highest near the eutectic point and is nearly five times that for the pure fluid, which slows down the nucleation rate by a factor of 10(-31). These free energy barriers are some of highest ever computed using simulations. For most of the conditions studied, the composition of the critical nucleus corresponds to either one of the two thermodynamically stable solid phases. However, near the eutectic point, the nucleation barrier is lowest for the formation of the metastable random hexagonal closed packed (rhcp) solid phase with composition lying in the two-phase region of the phase diagram. The fluid to solid phase transition is hypothesized to proceed via formation of a metastable rhcp phase followed by a phase separation into respective stable fcc solid phases.

19.
J Chem Phys ; 138(17): 174504, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23656141

RESUMO

The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.

20.
J Chem Phys ; 137(5): 054702, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894366

RESUMO

With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO(2) and CH(4) to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH(2), H(2)PO(3), NO(2), and CH(3). Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO(2) to exceed that of CH(4) by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH(2), H(2)PO(3), NO(2), and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO(2)/CH(4) selectivity are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA