Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 23(7): 1018-1028, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34288996

RESUMO

Glyphosate degradation has been extensively examined; however, only a few detailed computational studies have been performed on the topic so far. There are substantial differences between the degradation products of glyphosate, as AMPA (aminomethylphosphonic acid) is toxic while sarcosine intermediate is non-toxic. These species can have different effects on the environment and, indirectly, on the human body. We performed calculations using density functional theory and post-Hartree-Fock correlated ab initio methods to find the possible mechanisms for the degradation process by small (hydroxyl, peroxyl, and superoxide) radicals. We found that direct sarcosine formation is strongly dependent on the concentration of the radical species. AMPA and glycine were mostly formed as aldehyde derivatives, while in addition to the former, glyoxylate and bicarbonate are formed alternatively. A significant pH effect was also found for the competitive reactions determined by the calculated rate constants of the elementary steps. Overall barriers showed similarities by DFT but ab initio methods could separate them.


Assuntos
Herbicidas , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Humanos , Radical Hidroxila , Organofosfonatos , Glifosato
2.
J Mol Model ; 27(6): 166, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33987710

RESUMO

In vivo hydroxyl, peroxyl, and superoxide free radicals caused by oxidative stress can be toxic to molecules that are essential for the human body. However, there are natural compounds that can decrease the amount of these harmful species. In this work, we are focusing on two well-known compounds, alizarin (red) and curcumin, to study their interactions with these small radicals for a comparison between a rigid and a flexible structure. We made a mechanistic study and found the major and minor degradation products of curcumin as well as the autoxidation products of it based on a wide range of literature. We found several more favored pathways than those that were previously proposed. On the contrary, for degradation/oxidation of alizarin, only a few proposed mechanisms can be found which were performed in specific conditions. Our calculations predicted some favored rearrangements for the alizarin by peroxyl and superoxide radicals. Interaction of alizarin red and bright yellow curcumin with small radicals like hydroxyl, peroxyl, and superoxide radicals, such as the reaction between curcumin radicals and oxygen molecule, results in different species like epoxides or another kind of radical forms. The stability of epoxides is different in the case of rigid and flexible structures.


Assuntos
Antraquinonas/química , Simulação por Computador , Curcumina/química , Sequestradores de Radicais Livres/química , Modelos Químicos
3.
Dalton Trans ; 48(44): 16713-16721, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31670733

RESUMO

Monochloramine is a widely employed agent in water treatment technologies. However, its utilization has some drawbacks like the transformation of the active species into the undesired dichloramine. Although it is more pronounced in acidic solutions, the features of this reaction have still remained largely unexplored in the pH < 4 region. In this study the decomposition of monochloramine is examined under such conditions by using kinetic and computational methods. Fast kinetics measurements have convincingly showed that the disproportion into dicloramine is relatively fast and can be studied without any interference from side reactions. By varying the pH, the deprotonation constant of monochloramine has been determined by UV spectroscopy (Ka = 0.023 ± 0.005 M for I = 1.0 M NaClO4, and T = 25.0 °C). Dichloramine formation via monochloramine disproportion was found to follow second-order kinetics. The computations have provided the reaction mechanism and its free energy profile in accord with the proposed kinetic model. This involves the reaction between the protonated and unprotonated forms of monochloramine, with a rate constant k = 335.3 ± 11.8 M-1 s-1, corresponding to an activation free energy barrier of 14.1 kcal mol-1. The simulations predicted a barrier of 14.9 kcal mol-1 and revealed a key short-lived chlorine-bridged intermediate which yields dichloroamine and ammonium ion through a deprotonation-coupled chlorine shift.

4.
Inorg Chem ; 57(10): 5903-5914, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29701960

RESUMO

A novel iridium based, water-soluble phosphine-NHC (N-heterocyclic carbene) complex, Na2[Ir( emim)(η4-COD)( mtppts)] was previously developed in our research group. It was shown that it is a very effective catalyst for the reversible storage of hydrogen based on the formate-bicarbonate equilibrium. In this paper, we present a DFT investigation on the noninnocent behavior of the NHC ligand toward C-H activation of the N-ethyl side chain and its possible role in the hydrogen storage mechanism. After preliminary investigations, using both computations and NMR measurements, we conclude that the COD ligand leaves the precatalyst irreversibly and the C-H activation takes place on a monophosphine complex. Two main pathways are considered in which the active Ir(III) complexes are generated differently: One is the cyclometalation path involving the ethyl side chain, the other is the oxidative addition step of a water molecule which has a higher barrier but provide a more stable starting state. We find that though the latter, a catalytic cycle where a hydride is abstracted from formate and gets protonated by solvent molecules gives the lowest calculated energy barrier, +25.8 kcal mol-1. That is, avoiding further redox processes is preferred. There are other pathways involving thermodynamically accessible C-H activated iridacycles but those involve slightly higher overall activation barriers due to the required Ir(I)/Ir(III) transitions. The cycle which involves only iridacycle intermediates offer the lowest energy span (energy difference calculated between only the highest and lowest energy points inside the cycle), however. Together with the experimental results, this implies that C-H activation of the N-ethyl side chain happens off-cycle or the starting solvent addition step of the dominant pathway is blocked kinetically. We also discuss the hydrogen uptake reaction catalyzed by cyclometalated species where the reduction of CO2 is preferred over reversing the first main cycle.


Assuntos
Formiatos/química , Hidrogênio/química , Irídio/química , Compostos Organometálicos/química , Catálise
5.
J Phys Chem B ; 120(34): 9195-203, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27483334

RESUMO

The gas-phase interaction of anions including fluoride, chloride, bromide, iodide, ethyl sulfate, chlorate, and nitrate with polyisobutylene (PIB) derivatives was studied using collision-induced dissociation (CID). The gas-phase adducts of anions with PIBs ([PIB + anion](-)) were generated from the electrosprayed solution of PIBs in the presence of the corresponding anions. The so-formed adducts subjected to CID showed a loss of anion at different characteristic collision energies, thus allowing the study of the strength of interaction between the anions and nonpolar PIBs having different end-groups. The values of characteristic collision energies (the energy needed to obtain 50% fragmentation) obtained by CID experiments correlated linearly with the binding enthalpies between the anion and PIB, as determined by density functional theory calculations. In the case of halide ions, the critical energies for dissociation, that is, the binding enthalpies for [PIB + anion](-) adducts, increased in the order of I(-) < Br(-) < Cl(-) < F(-). Furthermore, it was found that the binding enthalpies for the adducts formed with halide ions decreased approximately with the square radius of the halide ion, suggesting that the strength of interaction is mainly determined by the "surface" charge density of the halide ion. In addition, the characteristic collision energy versus the number of isobutylene units revealed a linear dependence.

6.
J Am Soc Mass Spectrom ; 27(3): 432-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26620530

RESUMO

Polyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3 (-) and Cl(-) ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3](-) and [PIB + Cl](-) adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3](-) and [PIB + Cl](-) ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl](-) ions requires higher collision energy than that of [PIB + NO3](-). In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3 (-) and Cl(-) as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3](-) and [PIB + Cl](-) adduct ions.

7.
Inorg Chem ; 54(11): 5426-37, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977977

RESUMO

The X-ray structure of {C(NH2)3}[Tl(dota)]·H2O shows that the Tl(3+) ion is deeply buried in the macrocyclic cavity of the dota(4-) ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) with average Tl-N and Tl-O distances of 2.464 and 2.365 Å, respectively. The metal ion is directly coordinated to the eight donor atoms of the ligand, which results in a twisted square antiprismatic (TSAP') coordination around Tl(3+). A multinuclear (1)H, (13)C, and (205)Tl NMR study combined with DFT calculations confirmed the TSAP' structure of the complex in aqueous solution, which exists as the Λ(λλλλ)/Δ(δδδδ) enantiomeric pair. (205)Tl NMR spectroscopy allowed the protonation constant associated with the protonation of the complex according to [Tl(dota)](-) + H(+) ⇆ [Tl(Hdota)] to be determined, which turned out to be pK(H)Tl(dota) = 1.4 ± 0.1. [Tl(dota)](-) does not react with Br(-), even when using an excess of the anion, but it forms a weak mixed complex with cyanide, [Tl(dota)](-) + CN(-) ⇆ [Tl(dota)(CN)](2-), with an equilibrium constant of Kmix = 6.0 ± 0.8. The dissociation of the [Tl(dota)](-) complex was determined by UV-vis spectrophotometry under acidic conditions using a large excess of Br(-), and it was found to follow proton-assisted kinetics and to take place very slowly (∼10 days), even in 1 M HClO4, with the estimated half-life of the process being in the 10(9) h range at neutral pH. The solution dynamics of [Tl(dota)](-) were investigated using (13)C NMR spectroscopy and DFT calculations. The (13)C NMR spectra recorded at low temperature (272 K) point to C4 symmetry of the complex in solution, which averages to C4v as the temperature increases. This dynamic behavior was attributed to the Λ(λλλλ) ↔ Δ(δδδδ) enantiomerization process, which involves both the inversion of the macrocyclic unit and the rotation of the pendant arms. According to our calculations, the arm-rotation process limits the Λ(λλλλ) ↔ Δ(δδδδ) interconversion.

8.
J Mass Spectrom ; 50(1): 240-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25601699

RESUMO

Energy-dependent collision-induced dissociation (CID) of the dimers [2 M + Cat](+) of the noscapine and hydrastine stereoisomers was studied where Cat stands for Li(+), Na(+), K(+) and Cs(+) ions. These dimers were generated 'in situ' from the electrosprayed solution. The survival yield (SY) method was used for distinguishing the noscapine and hydrastine dimers. Significant differences were found between the characteristic collision energies (CE50, i.e. the collision energy necessary to obtain 50% fragmentation) of the homo- (R,R; S,S) and heterochiral (R,S; S,R) stereoisomers. To distinguish the enantiomer pairs L-, D-tyrosine ([M + Tyr + Cat](+)) and L-, D-lysine ([M + Lys + Cat](+)) were used as chiral selectors. Furthermore, these heterodimers [M + amino acid + Cat](+) were also applied to determine the stereoisomeric composition. It was found that the characteristic collision energy (CE50) of the noscapine and hydrastine homodimers ([2 M + Cat](+)) was inversely proportional to the ionic radius of the cations. Furthermore, the structures of the dimers [2 M + Cat](+) were studied by high level quantum chemical calculations.


Assuntos
Benzilisoquinolinas/análise , Noscapina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Benzilisoquinolinas/química , Cátions/química , Dimerização , Lítio/química , Lisina/química , Modelos Químicos , Noscapina/química , Teoria Quântica , Sódio/química , Estereoisomerismo , Tirosina/química
9.
Chemphyschem ; 15(16): 3614-25, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25167957

RESUMO

Mono- and dialkylated derivatives of 1-amino-5-isocyanonaphthalene (ICAN) were studied as new members of a multifunctional, easy-to-prepare fluorophore family, which showed excellent solvatochromic properties. The monoallyl derivative and the starting ICAN exhibited strong fluorescence quenching in the presence of small amounts of pyridine. The formation of a hydrogen-bonded ground-state pyridine complex was detected; however, analysis of quantum chemical calculations suggested the presence of an additional π-stacked pyridine complex. The Stern-Volmer plot of the quenching process exhibited a downward curvature and after reaching a minimum the fluorescence intensity increased back to a significant level at high pyridine concentrations. Significant fluorescence was observed even in pure pyridine. A new mechanism and a simple mathematical equation were derived to explain the downward curvature and the remaining fluorescence by the formation of a fluorescent π-stacked complex.


Assuntos
Corantes Fluorescentes/química , Naftalenos/química , Piridinas/química , Solventes/química , Alquilação , Ligação de Hidrogênio , Teoria Quântica , Espectrometria de Fluorescência
10.
Inorg Chem ; 53(6): 2858-72, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24564285

RESUMO

The Gd(3+)-DO3A-arylsulphonamide (DO3A-SA) complex is a promising pH-sensitive MRI agent. The stability constants of the DO3A-SA and DO3A complexes formed with Mg(2+), Ca(2+), Mn(2+), Zn(2+), and Cu(2+) ions are similar, whereas the logKLnL values of Ln(DO3A-SA) complexes are 2 orders of magnitude higher than those of the Ln(DO3A) complexes. The protonation constant (log KMHL) of the sulphonamide nitrogen in the Mg(2+), Ca(2+), Mn(2+), Zn(2+), and Cu(2+) complexes is very similar to that of the free ligand, whereas the logKLnHL values of the Ln(DO3A-SA) complexes are lower by about 4 logK units, indicating a strong interaction between the Ln(3+) ions and the sulphonamide N atom. The Ln(HDO3A-SA) complexes are formed via triprotonated *Ln(H3DO3A-SA) intermediates which rearrange to the final complex in an OH(-)-assisted deprotonation process. The transmetalation reaction of Gd(HDO3A-SA) with Cu(2+) is very slow (t1/2 = 5.6 × 10(3) h at pH = 7.4), and it mainly occurs through proton-assisted dissociation of the complex. The (1)H and (13)C NMR spectra of the La-, Eu-, Y-, and Lu(DO3A-SA) complexes have been assigned using 2D correlation spectroscopy (COSY, EXSY, HSQC). Two sets of signals are observed for Eu-, Y-, and Lu(DO3A-SA), showing two coordination isomers in solution, that is, square antiprismatic (SAP) and twisted square antiprismatic (TSAP) geometries with ratios of 86-14, 93-7, and 94-6%, respectively. Line shape analysis of the (13)C NMR spectra of La-, Y- , and Lu(DO3A-SA) gives higher rates and lower activation entropy values compared to Ln(DOTA) for the arm rotation, which indicates that the Ln(DO3A-SA) complexes are less rigid due to the larger flexibility of the ethylene group in the sulphonamide pendant arm. The fast isomerization and the lower activation parameters of Ln(DO3A-SA) have been confirmed by theoretical calculations in vacuo and by using the polarizable continuum model. The solid state X-ray structure of Cu(H2DO3A-SA) shows distorted octahedral coordination. The coordination sites of Cu(2+) are occupied by two ring N- and two carboxylate O-atoms in equatorial position. The other two ring N-atoms complete the coordination sphere in axial positions. The solid state structure also indicates that a carboxylate O atom and the sulphonamide nitrogen are protonated and noncoordinated.


Assuntos
Sulfonamidas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cinética , Modelos Moleculares , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
11.
Inorg Chem ; 50(13): 6163-73, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21639126

RESUMO

The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system.

12.
Inorg Chem ; 49(9): 4370-82, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20369836

RESUMO

The conformational properties of lanthanide(III) complexes with the mono- and biphosphonate analogues of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) are investigated by means of density functional theory (DFT) calculations and NMR spectroscopy. Geometry optimizations performed at the B3LYP/6-31G(d) level and using a 46 + 4f(n) effective core potential for lanthanides provide two energy minima corresponding to the square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) geometries. Our calculations give relative free energies between the SAP and TSAP isomers in fairly good agreement with the experimental values. The SAP isomer presents the highest binding energy of the ligand to the metal ion, which further increases with respect to that of the TSAP isomer across the lanthanide series as the charge density of the metal ion increases. The stabilization of the TSAP isomer upon substitution of the acetate arms of DOTA by methylenephosphonate ones is attributed to the higher steric demand of the phosphonate groups and the higher strain of the ligand in the SAP isomer. A (1)H NMR band-shape analysis performed on the [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes provided the activation parameters for enantiomerization of the TSAP form of the complexes. The TSAP isomerization process was also investigated by using DFT calculations on the [Lu(DOTA)](-) and [Ln(DO2A2P)](3-) (Ln = La and Lu) systems. Our results confirm that enantiomerization requires both rotation of the pendant arms and inversion of the four five-membered chelate rings formed upon coordination of the macrocyclic unit. According to our calculations, the arm rotation pathway in [Lu(DOTA)](-) is a one-step process involving the simultaneous rotation of the four acetate arms, while in the DO2A2P analogue, the arm-rotation process is a multistep path involving the stepwise rotation of each of the four pendant arms. The calculated activation free energies are in reasonably good agreement with the experimental data. A comparison of the experimental (13)C NMR shifts of [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes and those calculated by using the GIAO method confirms that the major isomer observed in solution for these complexes corresponds to the TSAP isomer.


Assuntos
Simulação por Computador , Compostos Heterocíclicos com 1 Anel/química , Elementos da Série dos Lantanídeos/química , Modelos Químicos , Compostos Organometálicos/química , Compostos Organofosforados/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
13.
J Inorg Biochem ; 103(11): 1426-38, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19766319

RESUMO

The stoichiometries and stability constants of a series of Al(3+)-N-phosponomethyl glycine (PMG/H(3)L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative (27)Al and (31)P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6M NaCl, 25 degrees C). Besides the mononuclear AlH(2)L(2+), Al(H(2)L)(HL), Al(HL)(2)(-) and Al(HL)L(2-), dimeric Al(2)(HL)L(+) and trinuclear Al(3)H(5)L(4)(2+) complexes have been postulated. (1)H and (31)P NMR data show that different isomers co-exist in solution and the isomerization reactions are slow on the (31)P NMR time scale. The geometries of monomeric and dimeric complexes likely double hydroxo bridged and double phosphonate bridged isomers have been optimized using DFT ab initio calculations starting from rational structural proposals. Energy calculations using the PCM solvation method also support the co-existence of isomers in solutions.


Assuntos
Compostos de Alumínio/química , Alumínio/química , Glicina/análogos & derivados , Glicina/química , Ressonância Magnética Nuclear Biomolecular , Potenciometria , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA