Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608987

RESUMO

Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 µm and quinoa starches from 5.18 to 5.72 µm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.


Assuntos
Amilose , Ácidos Graxos Voláteis , Oryza , Amido , Ácidos Graxos Voláteis/química , Amido/química , Amilose/química , Oryza/química , Fenômenos Químicos , Chenopodium quinoa/química , Tamanho da Partícula , Temperatura , Esterificação
2.
Carbohydr Polym ; 250: 116938, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049850

RESUMO

Starch nanoparticles (SNPs) are a promising choice for the strategic development of new renewable and biodegradable nanomaterials for novel biomedical and pharmaceutical applications when loaded with antibiotics or with anticancer agents as target drug delivery systems. The final properties of the SNPs are strongly influenced by the synthesis method and conditions being a controlled and monodispersed size crucial for these applications. The aim of this work was to synthesize controlled size SNPs through nanoprecipitation and microemulsion methods by modifying main operating parameters regarding the effect of amylose and amylopectin ratio in maize starches. SNPs were characterized by size and shape. SNPs from 59 to 118 nm were obtained by the nanoprecipitation method, registering the higer values when surfactant was added to the aqueous phase. Microemulsion method led to 35-147 nm sizes observing a higher particle formation capacity. The composition of the maize used influenced the final particle size and shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA