Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9014-9025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723621

RESUMO

Electron-coupled-proton buffers (ECPBs) store and deliver protons and electrons in a reversible fashion. We have recently reported an ECPB based on Cu and a redox-active ligand that promoted 4H+/4e- reversible transformations (J. Am. Chem. Soc. 2022, 144, 16905). Herein, we report a series of Cu-based ECPBs in which the ability of these to accept and/or donate H• equivalents can be tuned via ligand modification. The thermochemistry of the 4H+/4e- ECPB equilibrium was determined using open-circuit potential measurements. The reactivity of the ECPBs against proton-coupled electron transfer (PCET) reagents was also analyzed, and the results obtained were rationalized based on the thermochemical parameters. Experimental and computational analysis of the thermochemistry of the H+/e- transfers involved in the 4H+/4e- ECPB transformations found substantial differences between the stepwise (namely, BDFE1, BDFE2, BDFE3, and BDFE4) and average bond dissociation free energy values (BDFEavg.). Our analysis suggests that this "redox unleveling" is critical to promoting the disproportionation and ligand-exchange reactions involved in the 4H+/4e- ECPB equilibria. The difference in BDFEavg. within the series of Cu-based ECPBs was found to arise from a substantial change in the redox potential (E1/2) upon modification of the ligand scaffold, which is not fully compensated for by a change in the acidity/basicity (pKa), suggesting "thermochemical decompensation".

2.
J Am Chem Soc ; 144(37): 16905-16915, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083845

RESUMO

In this research article, we describe a 4H+/4e- electron-coupled-proton buffer (ECPB) based on Cu and a redox-active ligand. The protonated/reduced ECPB (complex 1: [Cu(8H+/14e-)]1+), consisting of CuI with 2 equiv of the ligand (catLH4: 1,1'-(4,5-dimethoxy-1,2-phenylene)bis(3-(tert-butyl)urea)), reacted with H+/e- acceptors such as O2 to generate the deprotonated/oxidized ECPB. The resulting compound, (complex 5: [Cu(4H+/10e-)]1+), was characterized by X-ray diffraction analysis, nuclear magnetic resonance (1H-NMR), and density functional theory, and it is electronically described as a cuprous bis(benzoquinonediimine) species. The stoichiometric 4H+/4e- reduction of 5 was carried out with H+/e- donors to generate 1 (CuI and 2 equiv of catLH4) and the corresponding oxidation products. The 1/5 ECPB system catalyzed the 4H+/4e- reduction of O2 to H2O and the dehydrogenation of organic substrates in a decoupled (oxidations and reductions are separated in time and space) and a coupled fashion (oxidations and reductions coincide in time and space). Mechanistic analysis revealed that upon reductive protonation of 5 and oxidative deprotonation of 1, fast disproportionation reactions regenerate complexes 5 and 1 in a stoichiometric fashion to maintain the ECPB equilibrium.


Assuntos
Elétrons , Prótons , Cobre/química , Ligantes , Oxirredução , Ureia
3.
Molecules ; 21(8)2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27556433

RESUMO

In view of the fact that the phosphorus atom in its low co-ordination state (coordination numbers 1 and 2) has been termed as the carbon copy, there have been attempts to investigate, theoretically as well as experimentally, the effect of the exchange(s) of CH- moiety with phosphorus atom(s) (CH/P) on the structural and other aspects of the classical carbocyclic and heterocyclic systems. Tropylium ion is a well-known non-benzenoid aromatic system and has been studied extensively for its aromatic character. We have now investigated the effect of mono- and poly-CH/P exchange(s) on the aromaticity of the tropylium ion. For this purpose, the parameters based on the geometry and magnetic properties, namely bond equalization, aromatic stabilization energies (ASE), Nucleus-Independent Chemical Shift (NICS) values, (NICS(0), NICS(1), NICS(1)zz), proton nucleus magnetic resonance (¹H-NMR) chemical shifts, magnetic susceptibility exaltation and magnetic anisotropic values of mono-, di-, tri- and tetra-phosphatropylium ions have been determined at the Density Functional Theory (DFT) (B3LYP/6-31+G(d)) level. Geometry optimization reveals bond length equalization. ASEs range from -46.3 kcal/mol to -6.2 kcal/mol in mono- and diphospha-analogues which are planar. However, the ions having three and four phosphorus atoms lose planarity and their ASE values approach the values typical for non-aromatic structures. Of the three NICS values, the NICS(1)zz is consistently negative showing aromatic character of all the systems studied. It is also supported by the magnetic susceptibility exaltations and magnetic anisotropic values. Furthermore, ¹H-NMR chemical shifts also fall in the aromatic region. The conclusion that mono-, di-, tri- and tetra-phosphatropylium ions are aromatic in nature has been further corroborated by determining the energy gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) (HOMO - LUMO gap), which falls in the range, ca. 3 × 10(-19)-9 × 10(-19) J. The systems having more than four phosphorus atoms are not able to sustain their monocyclic structure.


Assuntos
Cicloeptanos/química , Fósforo/química , Íons , Fenômenos Magnéticos , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA