Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39134909

RESUMO

The green synthesis of copper oxide nanoparticles (CuO) mediated by crude ethanolic extract and the n-butanol fraction of Adiantum venustum represents a groundbreaking approach in nanotechnology, combining ecological sustainability with advanced functionality. This innovative method leverages the natural bioactive compounds present in A. venustum to produce CuO nanoparticles, which exhibit remarkable antioxidant, anti-inflammatory, antimicrobial, and anti-proliferative properties. The green synthesized nanoparticles were characterized using a variety of techniques, as XRD confirmed the crystalline nature of the CuO nanoparticles, with a crystallite size of 14.65 nm for CuO-C and 18.73 nm for CuO-B. The grain sizes of CuO-C (14.09 ± 0.17 nm) and CuO-B (67.88 ± 2.08 nm) were determined using transmission electron microscopy micrographs. Furthermore, the synthesized nanomaterial and the crude ethanolic extract, n-butanol fraction, were examined for their biological potentials namely antioxidant, anti-inflammatory, antimicrobial, and anti-proliferative activity against HeLa cancer cells. Among the synthesized nanomaterials, copper oxide nanoparticles synthesized by utilizing the n-butanol fraction have appeared as a potential biomedical agent. CuO-B has arisen as an antioxidant agent with IC50 values of 44.63 ± 0.49 µg/mL, 48.49 ± 0.17 µg/mL, and 35.39 ± 0.61 µg/mL for DPPH, FRAP, and reducing power assay, respectively. Furthermore, the significant antibacterial potential of CuO-B against gram-positive (S. aureus MIC 46.88 µg/mL) and gram-negative (K. pneumonia MIC 23.48 µg/mL) bacterial strains cannot be neglected either. Along with this, the IC50 value (138.07 µg/mL) of CuO-B against HeLa cells proved it to be a potential anticancerous agent. Hence, this novel approach emphasized that these synthesized nanoparticles have tremendous biological potential and can be applied to various fields of agriculture and biomedicine.

2.
Front Pharmacol ; 15: 1361641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818380

RESUMO

Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.

3.
Bioorg Med Chem Lett ; 108: 129801, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38777279

RESUMO

Novel saturated 6-(4'-aryloxy phenyl) vinyl 1,2,4-trioxanes 12a(1-3)-12d(1-3) and 13a(1-3)-13d(1-3) have been designed and synthesized, in one single step from diimide reduction of 11a(1-3)-11d(1-3). All the newly synthesized trioxanes were evaluated for their antimalarial activity against multi-drug resistant Plasmodium yoelii nigeriensis via oral route. Cyclopentane-based trioxanes 12b1, 12c1 and 12d1, provided 100 % protection to the infected mice at 24 mg/kg × 4 days. The most active compound of the series, trioxane 12b1, provided 100 % protection even at 12 mg/kg × 4 days and 60 % protection at 6 mg/kg × 4 days. The currently used drug, ß-arteether provides only 20 % protection at 24 mg/kg × 4 days.


Assuntos
Antimaláricos , Resistência a Múltiplos Medicamentos , Compostos Heterocíclicos , Malária , Plasmodium yoelii , Animais , Plasmodium yoelii/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Camundongos , Administração Oral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Malária/tratamento farmacológico , Relação Estrutura-Atividade , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Estrutura Molecular , Modelos Animais de Doenças , Testes de Sensibilidade Parasitária
4.
Bioorg Med Chem Lett ; 103: 129700, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479483

RESUMO

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. ß-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.


Assuntos
Antimaláricos , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/química , Éter/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Etil-Éteres/farmacologia , Éteres/farmacologia
5.
Bioorg Med Chem Lett ; 97: 129561, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967655

RESUMO

Following the economic and social state of humanity, Malaria is categorized as one of the life-threatening illness epidemics in under developed countries. For the eradication of the same, 1,2,4-trioxanes 17a1-a2, 17b1-b2, 17c1-c2 15a-c, 18 and 19 have been synthesized continuing the creation of a novel series. Additionally, these novel compounds were tested for their effectiveness against the multidrug-resistant Plasmodium yoelii nigeriensis in mice model using both oral and intramuscular (im) administration routes. The two most potent compounds of the series, 17a1 and 17a2, demonstrated 100 % protection at 48 mg/kg x 4 days via oral route, which is twice as potent as artemisinin. In this model artemisinin provided 100 % protection at a dose of 48 mg/kg × 4 days and 80 % protection at 24 mg/kg × 4 days via im route.


Assuntos
Antimaláricos , Artemisininas , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Artemisininas/farmacologia
6.
Bol. latinoam. Caribe plantas med. aromát ; 21(6): 786-802, nov. 2022. mapas, ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1554696

RESUMO

The present study deals with the ethnomedicines used by migratory shepherds in an Indian Trans-Himalayan area. Shepherding depends on traditional healthcare practices. A non-probabilistic sampling technic was used for the selection of the research participants; the information was collected through 8 extensive field visits. The data was analyzed by the interpretation of the interviews since a qualitative as well as quantitative perspectives. A comparison with previous studies in the area was donebased on literature research. The results of this study show that shepherds in tribal areas are highly dependent on medicinal plants, they report the use of 58 taxa to handle their main health problems. They prefer 20 taxa, to treat; coughs, asthma, colds, throat complaints, general pain, fever, dysentery, diarrhea and urinary infections, which are the main reported illnesses. Mainly they use the fresh plant juices of these taxa. Two health issues are remarkable highblood pressure and jaundice.


El presente estudio trata sobre las etnomedicinas utilizadas por los pastores migratorios en una zona india transhimalaya. El pastoreo depende de las prácticas sanitarias tradicionales. Se utilizó una técnica de muestreo no probabilístico para la selección de los participantes de la investigación; la información se recopiló a través de 8 extensas visitas de campo. Los datos fueron analizados mediante la interpretación de las entrevistas desde una perspectiva tanto cualitativa como cuantitativa. Se realizó una comparación con estudios previos en el área basada en la investigación de la literatura. Los resultados de este estudio muestran que los pastores en áreas tribales son altamente dependientes de las plantas medicinales, informan el uso de 58 taxones para manejar sus principales problemas de salud. Prefieren 20 taxones para tratar; tos, asma, resfriados, molestias de garganta, dolor general, fiebre, disentería, diarrea e infecciones urinarias, que son las principales enfermedades reportadas. Principalmente utilizan los jugos de plantas frescas de estos taxones. Dos problemas de salud son la hipertensión arterial y la ictericia.


Assuntos
Plantas Medicinais , Etnobotânica/estatística & dados numéricos , Medicina Tradicional/estatística & dados numéricos , Inquéritos e Questionários , Índia
7.
Malariaworld J ; 6: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-38779628

RESUMO

Background: L-buthionine (S,R)-sulfoximine (BSO) regulates the glutathione (GSH) level, which in turn exhibits remarkable regulation of several important aspects of cellular metabolism. We hypothesised that increasing the cellular levels of glutathione leads to an increased resistance to arteether, whereas decreasing these by using a GSH inhibitor increases the parasite sensitivity to arteether in the rodent malaria parasite Plasmodium vinckei. Materials and Methods: We tested in vivo effects of BSO on GSH and hemozoin formation in arteether-sensitive and - resistant strains. Experimental groups of 7-8 Swiss mice were inoculated by intraperitoneal injection (i.p.) with 1×106 parasitized erythrocytes of PvAS (sensitive) or PvAR (resistant) strain of P. vinckei. The infected mice were treated with BSO (Sigma) 400 mg/kg twice a day for four days and blood was collected after the last injection with BSO. Results: A relatively stronger inhibition of GSH level was observed in the blood of mice infected with resistant parasites (62.64%; p<0.0001), whereas inhibition in sensitive strain-infected mice and uninfected mice was 32% (p=0.034) and 35% (p=0.034), respectively. The results also show an inverse relationship between GSH and hemozoin in the arteether-sensitive and -resistant strains. The hemozoin contents in the resistant strain are 0.27±0.09, 0.69±0.14 and 5.30±0.79 µmol/109 cells at 5, 10 and 20% parasitemia, respectively, whereas hemozoin contents in the sensitive strain at the same parasitemia levels are 0.59±0.29, 12.38±1.96 and 30.80±2.27 µmol/109 cells. Moreover, hemozoin formation increased by 80% through the administration of BSO in the arteether-resistant strain, whereas insignificant changes occurred in the sensitive strain. BSO was also found to increase the efficacy of arteether antimalarial activity against the resistant strain in vivo. Conclusions: Treatment with BSO significantly reduces the level of GSH, which leads to insufficient growth of resistant parasites. These results suggest that BSO might be helpful in prolonging the persistence of the drug, and pose a promising lead to help reducing the chance of resistance development against artemisinin and its derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA