Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(24): eabp8621, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714183

RESUMO

India experienced a massive surge in SARS-CoV-2 infections and deaths during April to June 2021 despite having controlled the epidemic relatively well during 2020. Using counterfactual predictions from epidemiological disease transmission models, we produce evidence in support of how strengthening public health interventions early would have helped control transmission in the country and significantly reduced mortality during the second wave, even without harsh lockdowns. We argue that enhanced surveillance at district, state, and national levels and constant assessment of risk associated with increased transmission are critical for future pandemic responsiveness. Building on our retrospective analysis, we provide a tiered data-driven framework for timely escalation of future interventions as a tool for policy-makers.

2.
Stat Med ; 41(13): 2317-2337, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35224743

RESUMO

False negative rates of severe acute respiratory coronavirus 2 diagnostic tests, together with selection bias due to prioritized testing can result in inaccurate modeling of COVID-19 transmission dynamics based on reported "case" counts. We propose an extension of the widely used Susceptible-Exposed-Infected-Removed (SEIR) model that accounts for misclassification error and selection bias, and derive an analytic expression for the basic reproduction number R0 as a function of false negative rates of the diagnostic tests and selection probabilities for getting tested. Analyzing data from the first two waves of the pandemic in India, we show that correcting for misclassification and selection leads to more accurate prediction in a test sample. We provide estimates of undetected infections and deaths between April 1, 2020 and August 31, 2021. At the end of the first wave in India, the estimated under-reporting factor for cases was at 11.1 (95% CI: 10.7,11.5) and for deaths at 3.58 (95% CI: 3.5,3.66) as of February 1, 2021, while they change to 19.2 (95% CI: 17.9, 19.9) and 4.55 (95% CI: 4.32, 4.68) as of July 1, 2021. Equivalently, 9.0% (95% CI: 8.7%, 9.3%) and 5.2% (95% CI: 5.0%, 5.6%) of total estimated infections were reported on these two dates, while 27.9% (95% CI: 27.3%, 28.6%) and 22% (95% CI: 21.4%, 23.1%) of estimated total deaths were reported. Extensive simulation studies demonstrate the effect of misclassification and selection on estimation of R0 and prediction of future infections. A R-package SEIRfansy is developed for broader dissemination.


Assuntos
COVID-19 , Número Básico de Reprodução , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Índia/epidemiologia , Pandemias , SARS-CoV-2
3.
BMC Res Notes ; 14(1): 262, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238344

RESUMO

OBJECTIVE: There has been much discussion and debate around the underreporting of COVID-19 infections and deaths in India. In this short report we first estimate the underreporting factor for infections from publicly available data released by the Indian Council of Medical Research on reported number of cases and national seroprevalence surveys. We then use a compartmental epidemiologic model to estimate the undetected number of infections and deaths, yielding estimates of the corresponding underreporting factors. We compare the serosurvey based ad hoc estimate of the infection fatality rate (IFR) with the model-based estimate. Since the first and second waves in India are intrinsically different in nature, we carry out this exercise in two periods: the first wave (April 1, 2020-January 31, 2021) and part of the second wave (February 1, 2021-May 15, 2021). The latest national seroprevalence estimate is from January 2021, and thus only relevant to our wave 1 calculations. RESULTS: Both wave 1 and wave 2 estimates qualitatively show that there is a large degree of "covert infections" in India, with model-based estimated underreporting factor for infections as 11.11 (95% credible interval (CrI) 10.71-11.47) and for deaths as 3.56 (95% CrI 3.48-3.64) for wave 1. For wave 2, underreporting factor for infections escalate to 26.77 (95% CrI 24.26-28.81) and to 5.77 (95% CrI 5.34-6.15) for deaths. If we rely on only reported deaths, the IFR estimate is 0.13% for wave 1 and 0.03% for part of wave 2. Taking underreporting of deaths into account, the IFR estimate is 0.46% for wave 1 and 0.18% for wave 2 (till May 15). Combining waves 1 and 2, as of May 15, while India reported a total of nearly 25 million cases and 270 thousand deaths, the estimated number of infections and deaths stand at 491 million (36% of the population) and 1.21 million respectively, yielding an estimated (combined) infection fatality rate of 0.25%. There is considerable variation in these estimates across Indian states. Up to date seroprevalence studies and mortality data are needed to validate these model-based estimates.


Assuntos
Pesquisa Biomédica , COVID-19 , Humanos , Índia/epidemiologia , SARS-CoV-2 , Estudos Soroepidemiológicos
4.
BMC Infect Dis ; 21(1): 533, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098885

RESUMO

BACKGROUND: Many popular disease transmission models have helped nations respond to the COVID-19 pandemic by informing decisions about pandemic planning, resource allocation, implementation of social distancing measures, lockdowns, and other non-pharmaceutical interventions. We study how five epidemiological models forecast and assess the course of the pandemic in India: a baseline curve-fitting model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical model (ICM). METHODS: Using COVID-19 case-recovery-death count data reported in India from March 15 to October 15 to train the models, we generate predictions from each of the five models from October 16 to December 31. To compare prediction accuracy with respect to reported cumulative and active case counts and reported cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the five models. For reported cumulative cases and deaths, we compute Pearson's and Lin's correlation coefficients to investigate how well the projected and observed reported counts agree. We also present underreporting factors when available, and comment on uncertainty of projections from each model. RESULTS: For active case counts, SMAPE values are 35.14% (SEIR-fansy) and 37.96% (eSIR). For cumulative case counts, SMAPE values are 6.89% (baseline), 6.59% (eSIR), 2.25% (SAPHIRE) and 2.29% (SEIR-fansy). For cumulative death counts, the SMAPE values are 4.74% (SEIR-fansy), 8.94% (eSIR) and 0.77% (ICM). Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) cumulative case counts as well. We compute underreporting factors as of October 31 and note that for cumulative cases, the SEIR-fansy model yields an underreporting factor of 7.25 and ICM model yields 4.54 for the same quantity. For total (sum of reported and unreported) cumulative deaths the SEIR-fansy model reports an underreporting factor of 2.97. On October 31, we observe 8.18 million cumulative reported cases, while the projections (in millions) from the baseline model are 8.71 (95% credible interval: 8.63-8.80), while eSIR yields 8.35 (7.19-9.60), SAPHIRE returns 8.17 (7.90-8.52) and SEIR-fansy projects 8.51 (8.18-8.85) million cases. Cumulative case projections from the eSIR model have the highest uncertainty in terms of width of 95% credible intervals, followed by those from SAPHIRE, the baseline model and finally SEIR-fansy. CONCLUSIONS: In this comparative paper, we describe five different models used to study the transmission dynamics of the SARS-Cov-2 virus in India. While simulation studies are the only gold standard way to compare the accuracy of the models, here we were uniquely poised to compare the projected case-counts against observed data on a test period. The largest variability across models is observed in predicting the "total" number of infections including reported and unreported cases (on which we have no validation data). The degree of under-reporting has been a major concern in India and is characterized in this report. Overall, the SEIR-fansy model appeared to be a good choice with publicly available R-package and desired flexibility plus accuracy.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Teorema de Bayes , Controle de Doenças Transmissíveis/métodos , Simulação por Computador , Previsões , Humanos , Índia/epidemiologia , Modelos Estatísticos
5.
BMJ Open ; 10(12): e041778, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303462

RESUMO

OBJECTIVES: To evaluate the effect of four-phase national lockdown from March 25 to May 31 in response to the COVID-19 pandemic in India and unmask the state-wise variations in terms of multiple public health metrics. DESIGN: Cohort study (daily time series of case counts). SETTING: Observational and population based. PARTICIPANTS: Confirmed COVID-19 cases nationally and across 20 states that accounted for >99% of the current cumulative case counts in India until 31 May 2020. EXPOSURE: Lockdown (non-medical intervention). MAIN OUTCOMES AND MEASURES: We illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case fatality rates, doubling times of cases, effective reproduction numbers and the scale of testing. RESULTS: The estimated effective reproduction number R for India was 3.36 (95% CI 3.03 to 3.71) on 24 March, whereas the average of estimates from 25 May to 31 May stands at 1.27 (95% CI 1.26 to 1.28). Similarly, the estimated doubling time across India was at 3.56 days on 24 March, and the past 7-day average for the same on 31 May is 14.37 days. The average daily number of tests increased from 1717 (19-25 March) to 113 372 (25-31 May) while the test positivity rate increased from 2.1% to 4.2%, respectively. However, various states exhibit substantial departures from these national patterns. CONCLUSIONS: Patterns of change over lockdown periods indicate the lockdown has been partly effective in slowing the spread of the virus nationally. However, there exist large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualisation tools that are daily updated at covind19.org.


Assuntos
Teste para COVID-19/estatística & dados numéricos , COVID-19/mortalidade , Saúde Pública/tendências , Quarentena/estatística & dados numéricos , COVID-19/prevenção & controle , Humanos , Índia/epidemiologia
6.
J Health Soc Sci ; 5(2): 231-240, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32875269

RESUMO

Recent media articles have suggested that women-led countries are doing better in terms of their responses to the COVID-19 pandemic. We examine an ensemble of public health metrics to assess the control of COVID-19 epidemic in women-versus men-led countries worldwide based on data available up to June 3. The median of the distribution of median time-varying effective reproduction number for women- and men-led countries were 0.89 and 1.14 respectively with the 95% two-sample bootstrap-based confidence interval for the difference (women - men) being [-0.34, 0.02]. In terms of scale of testing, the median percentage of population tested were 3.28% (women), 1.59% (men) [95% CI: (-1.29%, 3.60%)] with test positive rates of 2.69% (women) and 4.94% (men) respectively. It appears that though statistically not significant, countries led by women have an edge over countries led by men in terms of public health metrics for controlling the spread of the COVID-19 pandemic worldwide.

7.
medRxiv ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995829

RESUMO

The false negative rate of the diagnostic RT-PCR test for SARS-CoV-2 has been reported to be substantially high. Due to limited availability of testing, only a non-random subset of the population can get tested. Hence, the reported test counts are subject to a large degree of selection bias. We consider an extension of the Susceptible-Exposed-Infected-Removed (SEIR) model under both selection bias and misclassification. We derive closed form expression for the basic reproduction number under such data anomalies using the next generation matrix method. We conduct extensive simulation studies to quantify the effect of misclassification and selection on the resultant estimation and prediction of future case counts. Finally we apply the methods to reported case-death-recovery count data from India, a nation with more than 5 million cases reported over the last seven months. We show that correcting for misclassification and selection can lead to more accurate prediction of case-counts (and death counts) using the observed data as a beta tester. The model also provides an estimate of undetected infections and thus an under-reporting factor. For India, the estimated under-reporting factor for cases is around 21 and for deaths is around 6. We develop an R-package (SEIRfansy) for broader dissemination of the methods.

8.
Int Stat Rev ; 88(2): 462-513, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32834402

RESUMO

Multi-compartment models have been playing a central role in modelling infectious disease dynamics since the early 20th century. They are a class of mathematical models widely used for describing the mechanism of an evolving epidemic. Integrated with certain sampling schemes, such mechanistic models can be applied to analyse public health surveillance data, such as assessing the effectiveness of preventive measures (e.g. social distancing and quarantine) and forecasting disease spread patterns. This review begins with a nationwide macromechanistic model and related statistical analyses, including model specification, estimation, inference and prediction. Then, it presents a community-level micromodel that enables high-resolution analyses of regional surveillance data to provide current and future risk information useful for local government and residents to make decisions on reopenings of local business and personal travels. r software and scripts are provided whenever appropriate to illustrate the numerical detail of algorithms and calculations. The coronavirus disease 2019 pandemic surveillance data from the state of Michigan are used for the illustration throughout this paper.

9.
Harv Data Sci Rev ; 2020(Suppl 1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607504

RESUMO

With only 536 cases and 11 fatalities, India took the historic decision of a 21-day national lockdown on March 25. The lockdown was first extended to May 3 soon after the analysis of this paper was completed, and then to May 18 while this paper was being revised. In this paper, we use a Bayesian extension of the Susceptible-Infected-Removed (eSIR) model designed for intervention forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 infections in India compared to other less severe non-pharmaceutical interventions. We compare effects of hypothetical durations of lockdown on reducing the number of active and new infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases in the short term, and buy India invaluable time to prepare its healthcare and disease-monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown between 42-56 days is preferable to substantially "flatten the curve" when compared to 21-28 days of lockdown. Our models focus solely on projecting the number of COVID-19 infections and, thus, inform policymakers about one aspect of this multi-faceted decision-making problem. We conclude with a discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty quantification, accurate interpretation of forecasting models, reproducible data science methods and tools that can enable data-driven policymaking during a pandemic. Our software products are available at covind19.org.

10.
medRxiv ; 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32587995

RESUMO

Introduction: India has been under four phases of a national lockdown from March 25 to May 31 in response to the COVID-19 pandemic. Unmasking the state-wise variation in the effect of the nationwide lockdown on the progression of the pandemic could inform dynamic policy interventions towards containment and mitigation. Methods: Using data on confirmed COVID-19 cases across 20 states that accounted for more than 99% of the cumulative case counts in India till May 31, 2020, we illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case-fatality rates, doubling times of cases, effective reproduction numbers, and the scale of testing. Results: The estimated effective reproduction number R for India was 3.36 (95% confidence interval (CI): [3.03, 3.71]) on March 24, whereas the average of estimates from May 25 - May 31 stands at 1.27 (95% CI: [1.26, 1.28]). Similarly, the estimated doubling time across India was at 3.56 days on March 24, and the past 7-day average for the same on May 31 is 14.37 days. The average daily number of tests have increased from 1,717 (March 19-25) to 131,772 (May 25-31) with an estimated testing shortfall of 4.58 million tests nationally by May 31. However, various states exhibit substantial departures from these national patterns. Conclusions: Patterns of change over lockdown periods indicate the lockdown has been effective in slowing the spread of the virus nationally. The COVID-19 outbreak in India displays large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualization tools that are daily updated at covind19.org.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA