Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 628, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717629

RESUMO

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.


Assuntos
Escherichia coli , Vírus da Leucemia Murina de Moloney , DNA Polimerase Dirigida por RNA , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Leucemia Murina de Moloney/genética , Vírus da Leucemia Murina de Moloney/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , Isopropiltiogalactosídeo/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Meios de Cultura
2.
Prep Biochem Biotechnol ; 53(4): 384-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35792906

RESUMO

Bst DNA polymerase is a DNA polymerase derived from Geobacillus stearothermophilus, has a strand-displacement activity, and is used in loop-mediated isothermal amplification (LAMP) for rapid detection of COVID-19. Despite its potential to be employed in the detection of COVID-19, using commercially available enzymes is not economically feasible. The use of noncommercial enzyme for routine use is desirable. However, research on Bst DNA polymerase is still limited in Indonesia. For those reasons, a preliminary study of scale-up production of recombinant Bst polymerase was conducted. Therefore, the optimization of expression conditions was performed. The optimum conditions for Bst polymerase expression were as follows: 1 mM of IPTG, post-induction incubation time of 6 h, and induction at OD600 1.1. Employing optimum conditions could result in 2.8 times increase in protein yield compared to the initial conditions. Subsequently, an operation in 1 L working volume by a lab-scale bioreactor had been performed, followed by purification and dialysis. The optimum result for a 1 L lab-scale bioreactor was achieved by applying 100 rpm and 3 vvm, giving 11.7 mg/L of protein yield. Bst polymerase was successfully purified showing 813.56 U/mg of polymerase activity.


Assuntos
COVID-19 , DNA Polimerase I , Humanos , Geobacillus stearothermophilus/genética , Replicação do DNA , Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA