Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 321(4): H702-H715, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448637

RESUMO

Although pulmonary arterial hypertension (PAH) leads to right ventricle (RV) hypertrophy and structural remodeling, the relative contributions of changes in myocardial geometric and mechanical properties to systolic and diastolic chamber dysfunction and their time courses remain unknown. Using measurements of RV hemodynamic and morphological changes over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we discriminated the contributions of RV geometric remodeling and alterations of myocardial material properties to changes in systolic and diastolic chamber function. Significant and rapid RV hypertrophic wall thickening was sufficient to stabilize ejection fraction in response to increased pulmonary arterial pressure by week 4 without significant changes in systolic myofilament activation. After week 4, RV end-diastolic pressure increased significantly with no corresponding changes in end-diastolic volume. Significant RV diastolic chamber stiffening by week 5 was not explained by RV hypertrophy. Instead, model analysis showed that the increases in RV end-diastolic chamber stiffness were entirely attributable to increased resting myocardial material stiffness that was not associated with significant myocardial fibrosis or changes in myocardial collagen content or type. These findings suggest that whereas systolic volume in this model of RV pressure overload is stabilized by early RV hypertrophy, diastolic dilation is prevented by subsequent resting myocardial stiffening.NEW & NOTEWORTHY Using a novel combination of hemodynamic and morphological measurements over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we found that compensated systolic function was almost entirely explained by RV hypertrophy, but subsequently altered RV end-diastolic mechanics were primarily explained by passive myocardial stiffening that was not associated with significant collagen extracellular matrix accumulation.


Assuntos
Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipertensão Arterial Pulmonar/complicações , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita , Remodelação Ventricular , Animais , Fenômenos Biomecânicos , Diástole , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/patologia , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Modelos Cardiovasculares , Miocárdio/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Sístole , Fatores de Tempo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
2.
J Biomech Eng ; 141(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299076

RESUMO

Pulmonary arterial hypertension (PAH) commonly leads to right ventricular (RV) hypertrophy and fibrosis that affect the mechanical properties of the RV myocardium (MYO). To investigate the effects of PAH on the mechanics of the RV MYO and extracellular matrix (ECM), we compared RV wall samples, isolated from rats in which PAH was induced using the SuHx protocol, with samples from control animals before and after the tissues were decellularized. Planar biaxial mechanical testing, a technique first adapted to living soft biological tissues by Fung, was performed on intact and decellularized samples. Fung's anisotropic exponential strain energy function fitted the full range of biaxial test results with high fidelity in control and PAH samples both before and after they were decellularized. Mean RV myocardial apex-to-outflow tract and circumferential stresses during equibiaxial strain were significantly greater in PAH than control samples. Mean RV ECM circumferential but not apex-to-outflow tract stresses during equibiaxial strain were significantly greater in the PAH than control group. The ratio of ECM to myocardial stresses at matched strains did not change significantly between groups. Circumferential stresses were significantly higher than apex-to-outflow tract stresses for all groups. These findings confirm the predictions of a mathematical model based on changes in RV hemodynamics and morphology in rat PAH, and may provide a foundation for a new constitutive analysis of the contributions of ECM remodeling to changes in RV filling properties during PAH.

3.
J Biomech Eng ; 138(11)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27685536

RESUMO

In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.


Assuntos
Pressão Sanguínea , Hipertensão Pulmonar/fisiopatologia , Modelos Cardiovasculares , Artéria Pulmonar/fisiopatologia , Animais , Anisotropia , Força Compressiva , Simulação por Computador , Módulo de Elasticidade , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Masculino , Monocrotalina , Artéria Pulmonar/ultraestrutura , Ratos , Ratos Sprague-Dawley , Resistência ao Cisalhamento , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA