Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002122, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37713428

RESUMO

Organisms have evolved a range of constitutive (always active) and inducible (elicited by parasites) defence mechanisms, but we have limited understanding of what drives the evolution of these orthogonal defence strategies. Bacteria and their phages offer a tractable system to study this: Bacteria can acquire constitutive resistance by mutation of the phage receptor (surface mutation, sm) or induced resistance through their CRISPR-Cas adaptive immune system. Using a combination of theory and experiments, we demonstrate that the mechanism that establishes first has a strong advantage because it weakens selection for the alternative resistance mechanism. As a consequence, ecological factors that alter the relative frequencies at which the different resistances are acquired have a strong and lasting impact: High growth conditions promote the evolution of sm resistance by increasing the influx of receptor mutation events during the early stages of the epidemic, whereas a high infection risk during this stage of the epidemic promotes the evolution of CRISPR immunity, since it fuels the (infection-dependent) acquisition of CRISPR immunity. This work highlights the strong and lasting impact of the transient evolutionary dynamics during the early stages of an epidemic on the long-term evolution of constitutive and induced defences, which may be leveraged to manipulate phage resistance evolution in clinical and applied settings.


Assuntos
Bacteriófagos , Parasitos , Animais , Bacteriófagos/genética , Bactérias/genética , Mutação/genética , Sistemas CRISPR-Cas/genética
2.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226834

RESUMO

Antimicrobial resistance (AMR) genes are widely disseminated on plasmids. Therefore, interventions aimed at blocking plasmid uptake and transfer may curb the spread of AMR. Previous studies have used CRISPR-Cas-based technology to remove plasmids encoding AMR genes from target bacteria, using either phage- or plasmid-based delivery vehicles that typically have narrow host ranges. To make this technology feasible for removal of AMR plasmids from multiple members of complex microbial communities, an efficient, broad host-range delivery vehicle is needed. We engineered the broad host-range IncP1-plasmid pKJK5 to encode cas9 programmed to target an AMR gene. We demonstrate that the resulting plasmid pKJK5::csg has the ability to block the uptake of AMR plasmids and to remove resident plasmids from Escherichia coli. Furthermore, due to its broad host range, pKJK5::csg successfully blocked AMR plasmid uptake in a range of environmental, pig- and human-associated coliform isolates, as well as in isolates of two species of Pseudomonas. This study firmly establishes pKJK5::csg as a promising broad host-range CRISPR-Cas9 delivery tool for AMR plasmid removal, which has the potential to be applied in complex microbial communities to remove AMR genes from a broad range of bacterial species.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Humanos , Animais , Suínos , Especificidade de Hospedeiro , Transporte Biológico , Escherichia coli/genética , Plasmídeos/genética
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200464, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34839714

RESUMO

The acquisition of antibiotic resistance (ABR) genes via horizontal gene transfer (HGT) is a key driver of the rise in multidrug resistance amongst bacterial pathogens. Bacterial defence systems per definition restrict the influx of foreign genetic material, and may therefore limit the acquisition of ABR. CRISPR-Cas adaptive immune systems are one of the most prevalent defences in bacteria, found in roughly half of bacterial genomes, but it has remained unclear if and how much they contribute to restricting the spread of ABR. We analysed approximately 40 000 whole genomes comprising the full RefSeq dataset for 11 species of clinically important genera of human pathogens, including Enterococcus, Staphylococcus, Acinetobacter and Pseudomonas. We modelled the association between CRISPR-Cas and indicators of HGT, and found that pathogens with a CRISPR-Cas system were less likely to carry ABR genes than those lacking this defence system. Analysis of the mobile genetic elements (MGEs) targeted by CRISPR-Cas supports a model where this host defence system blocks important vectors of ABR. These results suggest a potential 'immunocompromised' state for multidrug-resistant strains that may be exploited in tailored interventions that rely on MGEs, such as phages or phagemids, to treat infections caused by bacterial pathogens. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Assuntos
Antibacterianos , Sistemas CRISPR-Cas , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Transferência Genética Horizontal , Genoma Bacteriano , Humanos
4.
Nature ; 574(7779): 549-552, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645729

RESUMO

About half of all bacteria carry genes for CRISPR-Cas adaptive immune systems1, which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome2. Whereas CRISPR loci evolve rapidly in natural environments3,4, bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions5,6. Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments7,8. Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR-Cas adaptive immunity, with key implications for bacterial fitness and virulence.


Assuntos
Bacteriófagos/genética , Bacteriófagos/imunologia , Biodiversidade , Sistemas CRISPR-Cas/genética , Evolução Molecular , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Bacteriófagos/patogenicidade , Sistemas CRISPR-Cas/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Receptores Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA