Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G659-G675, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591132

RESUMO

Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.


Assuntos
Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Leite , Probióticos , Animais , Feminino , Probióticos/farmacologia , Masculino , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Camundongos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Colo/metabolismo , Colo/microbiologia , Fatores Sexuais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia
2.
Nutrients ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447181

RESUMO

Cognitive alterations are a common feature associated with many neurodegenerative diseases and are considered a major health concern worldwide. Cognitive alterations are triggered by microglia activation and oxidative/inflammatory processes in specific areas of the central nervous system. Consumption of bioactive compounds with antioxidative and anti-inflammatory effects, such as astaxanthin and spirulina, can help in preventing the development of these pathologies. In this study, we have investigated the potential beneficial neuroprotective effects of a low dose of astaxanthin (ASX) microencapsulated within spirulina (ASXSP) in female rats to prevent the cognitive deficits associated with the administration of LPS. Alterations in memory processing were evaluated in the Y-Maze and Morris Water Maze (MWM) paradigms. Changes in microglia activation and in gut microbiota content were also investigated. Our results demonstrate that LPS modified long-term memory in the MWM and increased microglia activation in the hippocampus and prefrontal cortex. Preventive treatment with ASXSP ameliorated LPS-cognitive alterations and microglia activation in both brain regions. Moreover, ASXSP was able to partially revert LPS-induced gut dysbiosis. Our results demonstrate the neuroprotective benefits of ASX when microencapsulated with spirulina acting through different mechanisms, including antioxidant, anti-inflammatory and, probably, prebiotic actions.


Assuntos
Disfunção Cognitiva , Spirulina , Humanos , Ratos , Feminino , Animais , Lipopolissacarídeos/farmacologia , Pós , Transtornos da Memória/induzido quimicamente , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Antioxidantes/uso terapêutico , Anti-Inflamatórios/uso terapêutico
3.
Behav Brain Funct ; 18(1): 5, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216588

RESUMO

BACKGROUND: Several findings suggest neuroinflammation as a contributing factor for the onset of psychiatric disorders such as Alzheimer's disease, depression, and anxiety. There is increasing evidence pointing out that the Mediterranean diet influences brain and behavior. Mediterranean herbs and spices have been shown to be within those components of the Mediterranean diet involved in cognitive enhancement. Thus, we investigated the influence of Mediterranean natural extracts (MNE), Rosemary extract (RE) and Glycyrrhiza glabra root extract (GGRE), on cognitive behavior. RESULTS: Adult zebrafish were exposed to RE or GGRE (100 and 250 mg/L) treatments. Both MNE improved memory retention during the T-maze test, although no improvements were observed during the novel object preference. Similarly, chronic administration of RE (150 mg/Kg) and GGRE (150 mg/Kg) improved, respectively, spatial and retention memory, as assessed by the Morris Water Maze (MWM), and the Elevated Plus Maze (EPM) in healthy male rats. However, no improvements were observed during the novel object recognition. Finally, male, and female rats were chronically treated with lipopolysaccharide [(LPS) 300 ug/kg] and orally administered with RE. Interestingly, RE reversed LPS-induced cognitive deficit during the MWM and EPM in female rats. CONCLUSIONS: We found that MNE improved cognition in both zebrafish and rats. Moreover, MNE rescued LPS-induced cognitive impairment in a gender-specific manner. Therefore, our study supports the view that zebrafish represent a valuable preclinical model for drug discovery in neuroscience. These findings contribute to an exciting and growing body of research suggesting that MNE may play an important role in the prevention of cognitive impairment.


Assuntos
Disfunção Cognitiva , Lipopolissacarídeos , Animais , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Hipocampo , Lipopolissacarídeos/efeitos adversos , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Peixe-Zebra
4.
Infect Immun ; 89(9): e0005921, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820817

RESUMO

Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; ΔescV [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7). Behavior (novel-object recognition [NOR] task, light/dark [L/D] box, and open-field test [OFT]), intestinal physiology (Ussing chambers), and the gut microbiota (16S Illumina sequencing) were assessed in adulthood (6 to 8 weeks of age). Neonatal infection of mice with EPEC, but not the T3SS mutant, caused ileal inflammation in neonates and impaired recognition memory (NOR task) in adulthood. Cognitive impairments were coupled with increased neurogenesis (Ki67 and doublecortin immunostaining) and neuroinflammation (increased microglia activation [Iba1]) in adulthood. Intestinal pathophysiology in adult mice was characterized by increased secretory state (short-circuit current [Isc]) and permeability (conductance) (fluorescein isothiocyanate [FITC]-dextran flux) in the ileum and colon of neonatally EPEC-infected mice, along with increased expression of proinflammatory cytokines (Tnfα, Il12, and Il6) and pattern recognition receptors (Nod1/2 and Tlr2/4). Finally, neonatal EPEC infection caused significant dysbiosis of the gut microbiota, including decreased Firmicutes, in adulthood. Together, these findings demonstrate that infection in early life can significantly impair the MGB axis in adulthood.


Assuntos
Encéfalo/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Retroalimentação Fisiológica , Microbioma Gastrointestinal , Intestinos , Animais , Suscetibilidade a Doenças , Humanos
5.
EBioMedicine ; 63: 103176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33349590

RESUMO

BACKGROUND: The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. METHODS: B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FINDINGS: B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). INTERPRETATION: This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FUNDING: This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.


Assuntos
Bifidobacterium longum/fisiologia , Resistência à Doença , Interações entre Hospedeiro e Microrganismos , Obesidade/metabolismo , Adiposidade , Corticosteroides/sangue , Animais , Biomarcadores , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Leptina/sangue , Masculino , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Obesidade/etiologia , Probióticos , Roedores , Pesquisa Translacional Biomédica
6.
Brain Behav Immun ; 91: 437-450, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157256

RESUMO

Myelination in the peripheral and central nervous systems is critical in regulating motor, sensory, and cognitive functions. As myelination occurs rapidly during early life, neonatal gut dysbiosis during early colonization can potentially alter proper myelination by dysregulating immune responses and neuronal differentiation. Despite common usage of antibiotics (Abx) in children, the impact of neonatal Abx-induced dysbiosis on the development of microbiota, gut, brain (MGB) axis, including myelination and behavior, is unknown. We hypothesized that neonatal Abx-induced dysbiosis dysregulates host-microbe interactions, impairing myelination in the brain, and altering the MGB axis. Neonatal C57BL/6 mice were orally gavaged daily with an Abx cocktail (neomycin, vancomycin, ampicillin) or water (vehicle) from postnatal day 7 (P7) until weaning (P23) to induce gut dysbiosis. Behavior (cognition; anxiety-like behavior), microbiota sequencing, and qPCR (ileum, colon, hippocampus and pre-frontal cortex [PFC]) were performed in adult mice (6-8 weeks). Neonatal Abx administration led to intestinal dysbiosis in adulthood, impaired intestinal physiology, coupled with perturbations of bacterial metabolites and behavioral alterations (cognitive deficits and anxiolytic behavior). Expression of myelin-related genes (Mag, Mog, Mbp, Mobp, Plp) and transcription factors (Sox10, Myrf) important for oligodendrocytes were significantly increased in the PFC region of Abx-treated mice. Increased myelination was confirmed by immunofluorescence imaging and western blot analysis, demonstrating increased expression of MBP, SOX10 and MYRF in neonatally Abx-treated mice compared to sham controls in adulthood. Finally, administration of the short chain fatty acid butyrate following completion of the Abx treatment restored intestinal physiology, behavior, and myelination impairments, suggesting a critical role for the gut microbiota in mediating these effects. Taken together, we identified a long-lasting impact of neonatal Abx administration on the MGB axis, specifically on myelin regulation in the PFC region, potentially contributing to impaired cognitive function and bacterial metabolites are effective in reversing this altered phenotype.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos , Encéfalo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina
7.
Neuronal Signal ; 4(4): NS20200007, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33343931

RESUMO

Visceral hypersensitivity is a hallmark of many functional and stress-related gastrointestinal disorders, and there is growing evidence that the gut microbiota may play a role in its pathophysiology. It has previously been shown that early life stress-induced visceral sensitivity is reduced by various probiotic strains of bacteria (including Lactobacillus rhamnosus GG (LGG)) alone or in combination with prebiotic fibres in rat models. However, the exact mechanisms underpinning such effects remain unresolved. Here, we investigated if soluble mediators derived from LGG can mimic the bacteria's effects on visceral hypersensitivity and the microbiota-gut-brain axis. Rats were exposed to maternal separation (MS) from postnatal days 2-12. From weaning onwards both non-separated (NS) and MS offspring were provided drinking water with or without supplementation of standardized preparations of the LGG soluble mediators (LSM). Our results show that MS led to increased visceral sensitivity and exaggerated corticosterone plasma levels following restraint stress in adulthood, and both of these effects were ameliorated through LSM supplementation. Differential regulation of various genes in the spinal cord of MS versus NS rats was observed, 41 of which were reversed by LSM supplementation. At the microbiota composition level MS led to changes in beta diversity and abundance of specific bacteria including parabacteroides, which were ameliorated by LSM. These findings support probiotic soluble mediators as potential interventions in the reduction of symptoms of visceral hypersensitivity.

8.
Neurobiol Stress ; 13: 100252, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344707

RESUMO

Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.

9.
Psychiatr Genet ; 30(4): 87-100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459708

RESUMO

In recent decades, the concept of the gut microbiota as a potential novel therapeutic strategy for mental health has emerged. The tiny microbes inhabiting our gut communicate through a bidirectional communication signaling with the brain that influences gut physiology, brain function and behavior. Accumulating evidence suggests that perturbation of the gut microbiota contributes to the pathophysiology of mental illnesses including autism, depression and anxiety as well as neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. This review will highlight recent findings in both human and animal studies indicating how changes in the gut microbiota can impact the pathophysiology of such diseases. The current work will also provide an understanding of the efficacy of microbiota-targeted therapies on psychiatric disorders.


Assuntos
Microbioma Gastrointestinal/fisiologia , Transtornos Mentais/microbiologia , Doenças do Sistema Nervoso/microbiologia , Animais , Encéfalo , Modelos Animais de Doenças , Humanos , Transtornos Mentais/fisiopatologia , Saúde Mental , Doenças do Sistema Nervoso/fisiopatologia
10.
Eur J Neurosci ; 51(4): 1042-1058, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31339598

RESUMO

Nutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behaviour, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane [MFGM] and a polydextrose/galacto-oligosaccharide prebiotic blend) were evaluated. Diets were provided from postnatal day 21 to both non-separated and MS offspring. Spatial memory, visceral sensitivity and stress reactivity were assessed in adulthood. Gene transcripts associated with cognition and stress and the caecal microbiota composition were analysed. MS-induced visceral hypersensitivity was ameliorated by MFGM and to greater extent with the combination of MFGM and prebiotic blend. Furthermore, spatial learning and memory were improved by prebiotics and MFGM alone and with the combination. The prebiotic blend and the combination of the prebiotics and MFGM appeared to facilitate return to baseline with regard to HPA axis response to the restraint stress, which can be beneficial in times where coping mechanisms to stressful events are required. Interestingly, the combination of MFGM and prebiotic reduced the long-term impact of MS on a marker of myelination in the prefrontal cortex. MS affected the microbiota at family level only, while MFGM, the prebiotic blend and the combination influenced abundance at family and genus level as well as influencing beta-diversity levels. In conclusion, intervention with MFGM and prebiotic blend significantly impacted the composition of the microbiota as well as ameliorating some of the long-term effects of early-life stress.


Assuntos
Microbioma Gastrointestinal , Privação Materna , Microbiota , Animais , Encéfalo , Glicolipídeos , Glicoproteínas , Sistema Hipotálamo-Hipofisário , Gotículas Lipídicas , Sistema Hipófise-Suprarrenal , Prebióticos , Ratos , Estresse Fisiológico
11.
J Physiol ; 597(24): 5777-5797, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652348

RESUMO

KEY POINTS: •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour. ABSTRACT: Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre+ Nod1f/f ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.


Assuntos
Encéfalo/metabolismo , Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Serotonina/metabolismo , Transmissão Sináptica , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Encéfalo/fisiologia , Células Cultivadas , Cognição , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Absorção Intestinal , Mucosa Intestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
12.
Environ Pollut ; 253: 708-721, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31336350

RESUMO

The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca2+ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170-200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0-6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28-P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1ß, and Il22), and resulted in dysbiosis of the gut microbiota, including altered ß-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.


Assuntos
Poluentes Ambientais/toxicidade , Exposição Materna , Bifenilos Policlorados/toxicidade , Animais , Transtorno do Espectro Autista , Dieta , Exposição Dietética , Disbiose , Feminino , Proteína do X Frágil da Deficiência Intelectual , Microbioma Gastrointestinal , Homeostase , Humanos , Inflamação , Intestinos , Camundongos , Junções Íntimas , Testes de Toxicidade
13.
J Orthop Res ; 37(10): 2122-2129, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228216

RESUMO

The gut microbiome (GM) contributes to host development, metabolism, and disease. Perturbations in GM composition, elicited through chronic administration of oral antibiotics (Abx) or studied using germ-free environments, alter bone mass, and microarchitecture. However, studies primarily involved chronic Abx exposure to adult mice prior to evaluating the skeletal phenotype. Children are more prone to infection with bacterial pathogens than adults and are thus treated more frequently with broad-spectrum Abx; consequently, Abx treatment disproportionately occurs during periods of greatest skeletal plasticity to anabolic cues. Because early-life exposures may exert long-lasting effects on adult health, we hypothesized that acute Abx administration during a developmentally sensitive period would elicit lasting effects on the skeletal phenotype. To test this hypothesis, neonatal mice were treated with Abx (P7-P23; oral gavage) or vehicle (water); GM composition, gut physiology, and bone structural and material properties were assessed in adulthood (8 weeks). We found sexually dimorphic effects of neonatal Abx administration on GM composition, gut barrier permeability, and the skeleton, indicating a negative role for neonatal Abx on bone mass and quality. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2122-2129, 2019.


Assuntos
Antibacterianos/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Caracteres Sexuais , Ampicilina/administração & dosagem , Animais , Animais Recém-Nascidos , Colo/efeitos dos fármacos , Colo/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neomicina/administração & dosagem , Permeabilidade , Fenótipo , Vancomicina/administração & dosagem
14.
J Biomed Sci ; 25(1): 73, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309367

RESUMO

BACKGROUND: Visceral pain is a complex and heterogeneous disorder, which can range from the mild discomfort of indigestion to the agonizing pain of renal colic. Regulation of visceral pain involves the spinal cord as well as higher order brain structures. Recent findings have linked the microbiota to gastrointestinal disorders characterized by abdominal pain suggesting the ability of microbes to modulate visceral hypersensitivity and nociception to pain. MAIN BODY: In this review we describe the neuroanatomical basis of visceral pain signaling and the existing evidence of its manipulation exerted by the gut microbiota. We included an updated overview of the potential therapeutic effects of dietary intervention, specifically probiotics and prebiotics, in alleviating hypersensitivity to visceral pain stimuli. CONCLUSIONS: The gut microbiota dramatically impacts normal visceral pain sensation and affects the mechanisms mediating visceral nociception. Furthermore, manipulation of the gut microbiota using prebiotics and probiotics plays a potential role in the regulation of visceral pain disorders.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Probióticos/uso terapêutico , Dor Visceral/tratamento farmacológico , Humanos , Nociceptividade , Dor Visceral/fisiopatologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-27608809

RESUMO

OBJECTIVE: The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer's disease. DESIGN: Relevant literature was identified through a search of MEDLINE via PubMed using the following words, "n-3 PUFAs," "EPA," and "DHA" in combination with "stress," "cognition," "ADHD," "anxiety," "depression," "bipolar disorder," "schizophrenia," and "Alzheimer." The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. RESULTS: The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. CONCLUSIONS: Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies.


Assuntos
Envelhecimento/psicologia , Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Comportamento Alimentar , Transtornos Mentais/prevenção & controle , Saúde Mental , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Fatores de Proteção , Fatores de Risco
16.
Int J Neuropsychopharmacol ; 19(6)2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26657646

RESUMO

BACKGROUND: Chronic exposure to the glucocorticoid hormone corticosterone exerts cellular stress-induced toxic effects that have been associated with neurodegenerative and psychiatric disorders. Docosahexaenoic acid is a polyunsaturated fatty acid that has been shown to be of benefit in stress-related disorders, putatively through protective action in neurons. METHODS: We investigated the protective effect of docosahexaenoic acid against glucocorticoid hormone corticosterone-induced cellular changes in cortical cell cultures containing both astrocytes and neurons. RESULTS: We found that glucocorticoid hormone corticosterone (100, 150, 200 µM) at different time points (48 and 72 hours) induced a dose- and time-dependent reduction in cellular viability as assessed by methyl thiazolyl tetrazolium. Moreover, glucocorticoid hormone corticosterone (200 µM, 72 hours) decreased the percentage composition of neurons while increasing the percentage of astrocytes as assessed by ßIII-tubulin and glial fibrillary acidic protein immunostaining, respectively. In contrast, docosahexaenoic acid treatment (6 µM) increased docosahexaenoic acid content and attenuated glucocorticoid hormone corticosterone (200 µM)-induced cell death (72 hours) in cortical cultures. This translates into a capacity for docosahexaenoic acid to prevent neuronal death as well as astrocyte overgrowth following chronic exposure to glucocorticoid hormone corticosterone. Furthermore, docosahexaenoic acid (6 µM) reversed glucocorticoid hormone corticosterone-induced neuronal apoptosis as assessed by terminal deoxynucleotidyl transferase-mediated nick-end labeling and attenuated glucocorticoid hormone corticosterone-induced reductions in brain derived neurotrophic factor mRNA expression in these cultures. Finally, docosahexaenoic acid inhibited glucocorticoid hormone corticosterone-induced downregulation of glucocorticoid receptor expression on ßIII- tubulin-positive neurons. CONCLUSIONS: This work supports the view that docosahexaenoic acid may be beneficial in ameliorating stress-related cellular changes in the brain and may be of value in psychiatric disorders.

18.
PLoS One ; 10(10): e0139721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426902

RESUMO

BACKGROUND: Early life stress is a risk factor for many psychiatric disorders ranging from depression to anxiety. Stress, especially during early life, can induce dysbiosis in the gut microbiota, the key modulators of the bidirectional signalling pathways in the gut-brain axis that underline several neurodevelopmental and psychiatric disorders. Despite their critical role in the development and function of the central nervous system, the effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the regulation of gut-microbiota in early-life stress has not been explored. METHODS AND RESULTS: Here, we show that long-term supplementation of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) (80% EPA, 20% DHA) n-3 PUFAs mixture could restore the disturbed gut-microbiota composition of maternally separated (MS) female rats. Sprague-Dawley female rats were subjected to an early-life stress, maternal separation procedure from postnatal days 2 to 12. Non-separated (NS) and MS rats were administered saline, EPA/DHA 0.4 g/kg/day or EPA/DHA 1 g/kg/day, respectively. Analysis of the gut microbiota in adult rats revealed that EPA/DHA changes composition in the MS, and to a lesser extent the NS rats, and was associated with attenuation of the corticosterone response to acute stress. CONCLUSIONS: In conclusion, EPA/DHA intervention alters the gut microbiota composition of both neurodevelopmentally normal and early-life stressed animals. This study offers insights into the interaction between n-3 PUFAs and gut microbes, which may play an important role in advancing our understanding of disorders of mood and cognitive functioning, such as anxiety and depression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Privação Materna , Estresse Psicológico/tratamento farmacológico , Animais , Feminino , Masculino , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/microbiologia
19.
Psychoneuroendocrinology ; 58: 79-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25965872

RESUMO

Stressful life events, especially those in early life, can exert long-lasting changes in the brain, increasing vulnerability to mental illness especially in females. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a critical role in the development and function of the central nervous system (CNS). Thus, we investigated the influence of an eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) (80% EPA, 20% DHA) n-3 PUFAs mixture on stress-related behavioural and neurobiological responses. Sprague-Dawley female rats were subjected to an early-life stress, maternal separation (MS) procedure from postnatal days 2 to 12. Non-separated (NS) and MS rats were administered saline, EPA/DHA 0.4g/kg/day or EPA/DHA 1g/kg/day, respectively. In adulthood, EPA/DHA treated animals had a dose dependent reduction in anxiety in NS rats. Furthermore, cognitive performance in the novel object recognition task (NOR) was improved by EPA/DHA treatment in NS animals only. EPA/DHA 1g/kg/day decreased behavioural despair in the forced swim test. Notably, EPA/DHA high dose increased the translocation of GRs into the nucleus of NS rat hippocampus. However, the levels of mBDNF remained unchanged in all the experimental groups. The corticosterone response to an acute stress was blunted in MS rats and this was further attenuated by pre-treatment with EPA/DHA. Immune response and monoamine neurotransmission were significantly altered by early-life stress. In conclusion, our study supports the view that n-3 PUFAs are beneficial in neurodevelopmentally normal animals but have little positive benefit in animals exposed to early life stress.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Privação Materna , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico
20.
Neuropharmacology ; 66: 236-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22609536

RESUMO

The glutamatergic system is increasingly being viewed as a promising target for the development of novel treatments for depression. The group III metabotropic glutamate (mGlu) receptors (mGlu(4, 7) and (8) receptors) in particular are beginning to show promise in this respect. It remains unclear how antidepressant medications modulate mGlu receptors. In this study we investigated the effects of three antidepressant treatments (fluoxetine, ketamine and electroconvulsive shock therapy (ECT)). Ketamine is an NMDA receptor antagonist which possess a rapid antidepressant therapeutic profile and moreover is effective in cases of treatment-resistant depression. Furthermore, ECT is also a therapeutic strategy possessing increased efficacy compared to conventional monoamine based therapies. The effect these two highly efficacious treatments have on hippocampal group III mGlu receptors remains completely unexplored. To redress this deficit we investigated the effects these treatments and the prototypical selective serotonin reuptake inhibitor (SSRI) fluoxetine would have on hippocampal group III mGlu receptor mRNA levels in naïve Sprague-Dawley rats and rats which had undergone early-life stress in the form of the maternal separation (MS) procedure. We found MS significantly reduced mGlu(4) receptor expression and fluoxetine reversed this MS induced change. ECT and ketamine treatment significantly reduced mGlu(4) receptor expression in non-separated (NS) animals while having no effect in MS animals. Fluoxetine and ECT significantly increased mGlu(7) receptor expression in NS animals. This work demonstrates changes to mGlu(4) receptor expression may be a lasting molecular change which occurs due to early-life stress. Taken together our data shows there are selective changes to group III mGlu receptors under basal and early-life stress conditions. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Assuntos
Antidepressivos/farmacologia , Hipocampo/metabolismo , Privação Materna , Receptores de Glutamato Metabotrópico/biossíntese , Estresse Psicológico/metabolismo , Animais , Eletrochoque/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Masculino , N-Metilaspartato/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA