Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310106, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38746966

RESUMO

Metal-Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL-142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+ (tpy = 2,2':6',2″-terpyridine and Qc = 8-quinolinecarboxylate)-doped Fe MIL-142 achieved a high photocurrent (1.6 × 10-3 A·cm-2) in photo-electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2 evolution is also reported with Pt as the co-catalyst (4.8 µmol g-1 min-1). The high activity of this new system enables hydrogen gas capture from an easy-to-manufacture, scaled-up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF-based light-driven water-splitting assemblies utilizing a minimal amount of precious metals and Fe-based photosensitizers.

2.
Inorg Chem ; 63(18): 8050-8058, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38662572

RESUMO

Artificial photosynthesis stands out as a highly effective method for harnessing sunlight to produce clean and renewable energy. The light-absorbing properties, chemical stability, and high redox activity of Ce-based metal-organic frameworks (MOFs) make them attractive materials for visible-light-driven water splitting. Currently, Ce-based MOFs remain a relatively underexplored system for photocatalytic water oxidation in acidic media. In this study, we synthesized a Ce-MOF with different linkers (1,4-benzenedicarboxylic acid, tetrafluoroterephthalic acid, 2-nitroterephthalic acid, 2,2'-bipyridine-5,5'-dicarboxylic acid, and 4,4'-biphenyldicarboxylic acid), which exhibit light-absorbing capability. Ce-based MOFs doped with [Ru(bpy)(dcbpy)(H2O)2]2+ (MOF-1 and MOF-2) water oxidation catalyst showed an enhanced photoelectrocatalytic current of ∼10-4 A·cm-2 at pH = 1, which is comparable with the [Ru(bpy)(dcbpy)(H2O)2]2+-doped MIL-126 Fe-based MOF. We also demonstrated the long-term durability of Ru-doped Ce-MOFs for photoelectrocatalytic water oxidation under acidic conditions. The as-synthesized MOFs were analyzed with powder X-ray diffraction (PXRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), and electric conductivity measurements. This study contributes to the development of cost-effective materials for sustainable photocatalytic water splitting processes.

3.
J Phys Chem Lett ; 15(5): 1521-1528, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38299494

RESUMO

Stabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn1+ was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kß nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). The latter allowed us to obtain site-selective XANES information about two distinct Mn centers. The obtained spectroscopic data represent the first electronic structure characterization of low-spin Mn1+ using hard X-ray RIXS and XES and allowed us to confirm its role in anode reduction. Our experimental approach can be expanded to analysis of analogues with other 3d transition metals broadening the application of exotic ionic states in materials engineering.

4.
J Catal ; 4292024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38187083

RESUMO

Photoelectrochemical water splitting can produce green hydrogen for industrial use and CO2-neutral transportation, ensuring the transition from fossil fuels to green, renewable energy sources. The iron-based electrocatalyst [FeII4FeIII(µ-3-O)(µ-L)6]3+ (LH = 3,5-bis(2-pyridyl)pyrazole) (1), discovered in 2016, is one of the fastest molecular water oxidation catalysts (WOC) based on earth-abundant elements. However, its water oxidation reaction mechanism has not been yet fully elucidated. Here, we present in situ X-ray spectroscopy and electron paramagnetic resonance (EPR) analysis of electrochemical water oxidation reaction (WOR) promoted by (1) in water-acetonitrile solution. We observed transient reactive intermediates during the in situ electrochemical WOR, consistent with a coordination sphere expansion prior to the onset of catalytic current. At a pre-catalytic (~+1.1 V vs. Ag/AgCl) potential, the distinct g~2.0 EPR signal assigned to FeIII/FeIV interaction was observed. Prolonged bulk electrolysis at catalytic (~+1.6 V vs. Ag/AgCl) potential leads to the further oxidation of Fe centers in (1). At the steady state achieved with such electrolysis, the formation of hypervalent FeV=O and FeIV=O catalytic intermediates was inferred with XANES and EXAFS fitting, detecting a short Fe=O bond at ~1.6 Å. (1) was embedded into MIL-126 MOF with the formation of (1)-MIL-126 composite. The latter was tested in photoelectrochemical WOR and demonstrated an improvement of electrocatalytic current upon visible light irradiation in acidic (pH=2) water solution. The presented spectroscopic analysis gives further insight into the catalytic pathways of multinuclear systems and should help the subsequent development of more energy- and cost-effective catalysts of water splitting based on earth-abundant metals. Photoelectrocatalytic activity of (1)-MIL-126 confirms the possibility of creating an assembly of (1) inside a solid support and boosting it with solar irradiation towards industrial applications of the catalyst.

5.
Inorg Chem ; 62(27): 10780-10791, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369063

RESUMO

Amyloid precursor protein (APP) is the biological precursor of ß-amyloids, a known histopathological hallmark associated with Alzheimer's disease (AD). The function of APP is of great interest yet remains elusive. One of the extracellular domains of APP, the E2 domain, has been proposed to possess ferroxidase activity and affect neuronal iron homeostasis. However, contradicting evidence has been reported, and its precise role remains inconclusive. Here, we studied the Cu-binding site of the E2 domain using extended X-ray absorption fine structure (EXAFS), UV-vis, and electron paramagnetic resonance (EPR) and discovered that a new labile water ligand coordinates to the Cu(II) cofactor in addition to the four known histidines. We explored the proposed ferroxidase activity of the Cu(II)-E2 domain through reactions with ferrous iron and observed single-turnover ferrous oxidation activity with a rate up to 1.0 × 102 M-1 s-1. Cu(I)-E2 reacted with molecular oxygen at a rate of only 5.3 M-1 s-1, which would restrict any potential multiturnover ferroxidase activity to this slow rate and prevents observation of activity under multiturnover conditions. The positive electrostatic potential surface of the protein indicates possible reactivity with negatively charged small substrates such as superoxide radicals (O2•-) and peroxynitrite (ONOO-) that are major contributors to the oxidative stress prevalent in the extracellular environment. Our assays showed that Cu(I)-E2 can remove O2•- at a rate of 1.6 × 105 M-1 s-1, which is slower than the rates of native SODs. However, the reaction between Cu(I)-E2 and ONOO- achieved a rate of 1.1 × 105 M-1 s-1, comparable to native ONOO- scavenger peroxiredoxins (105-107 M-1 s-1). Therefore, the E2 domain of APP can serve as an enzymatic site that may function as a ferroxidase under substrate-limiting conditions, a supplemental O2•- scavenger, and an ONOO- remover in the vicinity of the cellular iron efflux channel and protect neuron cells from reactive oxygen species (ROS) and reactive nitrogen species (RNS) damage.


Assuntos
Precursor de Proteína beta-Amiloide , Ceruloplasmina , Ceruloplasmina/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Superóxidos , Ácido Peroxinitroso/metabolismo , Ferro/metabolismo
6.
J Am Chem Soc ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036435

RESUMO

A high-valent manganese(IV)-hydroxo porphyrin π-cation radical complex, [Mn(IV)(OH)(Porp+•)(X)]+, was synthesized and characterized spectroscopically. The Mn porphyrin intermediate was highly reactive in alkane hydroxylation and oxygen atom transfer reactions. More importantly, the Mn porphyrin intermediate reacted with water at a fast rate, resulting in the dioxygen evolution. To the best of our knowledge, we report the first manganese Cpd I model compound bearing a porphyrin π-cation radical ligand with a high reactivity in oxidation reactions, including water oxidation.

7.
ChemSusChem ; 16(5): e202202124, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479638

RESUMO

Artificial photosynthesis strives to convert the energy of sunlight into sustainable, eco-friendly solar fuels. However, systems with light-driven water oxidation reaction (WOR) at pH=1 are rare. Broadly used [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) photosensitizer has a fixed +1.23 V potential which is insufficient to drive most water oxidation catalysts (WOCs) in acid, while Fe2 O3 , featuring the highly oxidizing holes, is not stable at low pH. Here, the key examples of Fe-based metal-organic framework (MOF) water oxidation photoelectrocatalysts active at pH=1 are presented. Fe-MIL-126 and Fe MOF-dcbpy structures were formed with 4,4'-biphenyl dicarboxylate (bpdc), 2,2'-bipyridine-5,5'-dicarboxylate (dcbpy) linkers and their mixtures. Presence of dcbpy linkers allows integration of metal-based catalysts via coordination to 2,2'-bipyridine fragments. Fe-based MOFs were doped with Ru-based precursors to achieve highly active MOFs bearing [Ru(bpy)(dcbpy)(H2 O)2 ]2+ WOC. Materials were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) spectroscopy, resonance Raman, X-ray absorption spectroscopy, fs optical pump-probe, electron paramagnetic resonance (EPR), diffuse reflectance and electric conductivity measurements and were modeled by band structure calculations. It is shown that under reaction conditions, FeIII and RuIII oxidation states are present, indicating rate-limiting electron transfer in MOF. Fe3 O nodes emerge as photosensitizers able to drive prolonged O2 evolution in acid. Further developments are possible via MOF's linker modification for enhanced light absorption, electrical conductivity, reduced MOF solubility in acid, Ru-WOC modification for faster WOC catalysis, or Ru-WOC substitution to 3d metal-based systems. The findings give further insight for development of light-driven water splitting systems based on Earth-abundant metals.

8.
J Phys Chem Lett ; 14(1): 41-48, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36566390

RESUMO

Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kß emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.


Assuntos
Heme , Metaloproteínas , Heme/metabolismo , Espectrometria por Raios X , Metais , Domínio Catalítico
9.
J Am Chem Soc ; 144(39): 17824-17831, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154168

RESUMO

We report an iron-based graphite-conjugated electrocatalyst (GCC-FeDIM) that combines the well-defined nature of homogeneous molecular electrocatalysts with the robustness of a heterogeneous electrode. A suite of spectroscopic methods, supported by the results of DFT calculations, reveals that the electrode surface is functionalized by high spin (S = 5/2) Fe(III) ions in an FeN4Cl2 coordination environment. The chloride ions are hydrolyzed in aqueous solution, with the resulting cyclic voltammogram revealing a Gaussian-shaped wave assigned to 1H+/1e- reduction of surface Fe(III)-OH surface. A catalytic wave is observed in the presence of NO3-, with an onset potential of -1.1 V vs SCE. At pH 6.0, GCC-FeDIM rapidly reduces NO3- to ammonium and nitrite with 88 and 6% Faradaic efficiency, respectively. Mechanistic studies, including in situ X-ray absorption spectroscopy, suggest that electrocatalytic NO3- reduction involves an iron nitrosyl intermediate. The Fe-N bond length (1.65 Å) is similar to that observed in {Fe(NO)}6 complexes, which is supported by the results of DFT calculations.


Assuntos
Compostos de Amônio , Grafite , Cloretos , Compostos Férricos/química , Ferro/química , Modelos Moleculares , Nitratos , Nitritos , Óxidos de Nitrogênio
10.
Catalysts ; 12(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37309356

RESUMO

Linear free energy scaling relationships (LFESRs) and regression analysis may predict the catalytic performance of heterogeneous and recently, homogenous water oxidation catalysts (WOCs). This study analyses twelve homogeneous Ru-based catalysts - some, the most active catalysts studied: the Ru(tpy-R)(QC) and Ru(tpy-R)(4-pic)2 catalysts, where tpy is 2,2:6,2-terpyridine, QC is 8-quinolinecarboxylate and 4-pic is 4-picoline. Typical relationships studied among heterogenous and solid-state catalysts cannot be broadly applied to homogeneous catalysts. This subset of structurally similar catalysts with impressive catalytic activity deserves closer computational and statistical analysis of energetics correlating with measured catalytic activity. We report general methods of LFESR analysis yield insufficiently robust relationships between descriptor variables. However, volcano plot-based analysis grounded in Sabatier's principle reveals ranges of ideal relative energies of the RuIV=O and RuIV-OH intermediates and optimal changes in free energies of water nucleophilic attack on RuV=O. A narrow range of RuIV-OH to RuV=O redox potentials corresponding with the highest catalytic activities suggests facile access to the catalytically competent high-valent RuV=O state, often inaccessible from RuIV=O. Our work introduces experimental oxygen evolution rates into approaches of LFESR and Sabatier principle-based analysis, identifying a narrow yet fertile energetic landscape to bountiful oxygen-evolution activity, leading future rational design.

11.
ChemSusChem ; 15(4): e202101657, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34905663

RESUMO

Catalytic water oxidation is an important process for the development of clean energy solutions and energy storage. Despite the significant number of reports on active catalysts, systematic control of the catalytic activity remains elusive. In this study, descriptors are explored that can be correlated with catalytic activity. [Ru(tpy)(pic)2 (H2 O)](NO3 )2 and [Ru(EtO-tpy)(pic)2 (H2 O)](NO3 )2 (where tpy=2,2' : 6',2"-terpyridine, EtO-tpy=4'-(ethoxy)-2,2':6',2"-terpyridine, pic=4-picoline) are synthesized and characterized by NMR, UV/Vis, EPR, resonance Raman, and X-ray absorption spectroscopy, and electrochemical analysis. Addition of the ethoxy group increases the catalytic activity in chemically driven and photocatalytic water oxidation. Thus, the effect of the electron-donating group known for the [Ru(tpy)(bpy)(H2 O)]2+ family is transferable to architectures with a tpy ligand trans to the Ru-oxo unit. Under catalytic conditions, [Ru(EtO-tpy)(pic)2 (H2 O)](NO3 )2 displays new spectroscopic signals tentatively assigned to a peroxo intermediate. Reaction pathways were analyzed by using DFT calculations. [Ru(EtO-tpy)(pic)2 (H2 O)](NO3 )2 is found to be one of the most active catalysts functioning by a water nucleophilic attack mechanism.

12.
J Am Chem Soc ; 143(38): 15556-15561, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529428

RESUMO

A mononuclear non-heme iron(III)-peroxo complex, [Fe(III)(O2)(13-TMC)]+ (1), was synthesized and characterized spectroscopically; the characterization with electron paramagnetic resonance, Mössbauer, X-ray absorption, and resonance Raman spectroscopies and mass spectrometry supported a high-spin S = 5/2 Fe(III) species binding an O2 unit. A notable observation was an unusually high νO-O at ∼1000 cm-1 for the peroxo ligand. With regard to reactivity, 1 showed electrophilic reactivity in H atom abstraction (HAA) and O atom transfer (OAT) reactions. In the HAT reaction, a kinetic isotope effect (KIE) value of 5.8 was obtained in the oxidation of 9,10-dihydroanthracene. In the OAT reaction, a negative ρ value of -0.61 in the Hammett plot was determined in the oxidation of p-X-substituted thioanisoles. Another interesting observation was the electrophilic reactivity of 1 in the oxidation of benzaldehyde derivatives, such as a negative ρ value of -0.77 in the Hammett plot and a KIE value of 2.2. To the best of our knowledge, the present study reports the first example of a mononuclear non-heme iron(III)-peroxo complex with an unusually high νO-O value and unprecedented electrophilic reactivity in oxidation reactions.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Benzaldeídos/química , Cinética , Ligantes , Estrutura Molecular , Oxirredução , Oxigênio/química , Sulfetos/química
13.
Chem Catal ; 1(2): 407-422, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37378353

RESUMO

Catalytic water oxidation is a required process for clean energy production based on the concept of artificial photosynthesis. Here, we provide in situ spectroscopic and computational analysis for the closest known photosystem II analog, [Co4O4]n+ ([Co4O4Py4Ac4]0, Py = pyridine and Ac = CH3COO-), which catalyzes electrochemical water oxidation. In situ extended X-ray absorption fine structure detects an ultrashort, CoIV=O (~1.67 Å) moiety, a crucial intermediate for O-O bond formation. Density function theory analyses show that the intermediate has two CoIV centers and a CoIV=O unit of strong radicaloid character sufficient to support a CoIV=O + H2O = Co-OOH + H+ transition, where the carboxyl ligand accepts the proton and the bridging oxygen stabilizes the peroxide via hydrogen bonding. The proposed water nucleophilic attack mechanism accounts for all prior spectroscopic evidence on the Co4O44+ core. Our results are important for the design and development of efficient water oxidation catalysts, which contribute to the ultimate goal of clean energy from artificial photosynthesis.

14.
Inorg Chem ; 59(19): 13880-13887, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32924462

RESUMO

Ru-based coordination compounds have important applications as photosensitizers and catalysts. [RuII(bpy)2(bpyNO)]2+ (bpy = 2,2'-bipyridine and bpyNO = 2,2'-bipyridine-N-oxide) was reported to be extremely light-sensitive, but its light-induced transformation pathways have not been analyzed. Here, we elucidated a mechanism of the light-induced transformation of [RuII(bpy)2(bpyNO)]2+ using UV-vis, EPR, resonance Raman, and NMR spectroscopic techniques. The spectroscopic analysis was augmented with the DFT calculations. We concluded that upon 530-650 nm light excitation, 3[RuIII(bpyNO-•)(bpy)2]2+ is formed similarly to the 3[RuIII(bpy-•)(bpy)2]2+ light-induced state of the well-known photosensitizer [RuII(bpy)3]2+. An electron localization on the bpyNO ligand was confirmed by obtaining a unique EPR signal of reduced [RuII(bpy)2(bpyNO-•)]+ (gxx = 2.02, gyy = 1.99, and gzz = 1.87 and 14N hfs Axx = 12 G, Ayy = 34 G, and Azz = 11 G). 3[RuIII(bpyNO-•)(bpy)2]2+ may evolve via breaking of the Ru-O-N fragment at two different positions resulting in [RuIV═O(bpy)2(bpyout)]2+ for breakage at the O-|-N bond and [RuII(H2O)(bpy)2(bpyNOout)]2+ for breakage at the Ru-|-O bond. These pathways were found to have comparable ΔG. A reduction of [RuIV═O(bpy)2(bpyout)]2+ may result in water elimination and formation of [RuII(bpy)3]2+. The expected intermediates, [RuIII(bpy)2(bpyNO)]3+ and [RuIII(bpy)3]3+, were detected by EPR. In addition, a new signal with gxx = 2.38, gyy = 2.10, and gzz = 1.85 was observed and tentatively assigned to a complex with the dissociated ligand, such as [RuIII(H2O)(bpy)2(bpyNOout)]3+. The spectroscopic signatures of [RuIV═O(bpy)2(bpyout)]2+ were not observed, although DFT analysis and [RuII(bpy)3]2+ formation suggest this intermediate. Thus, [RuII(bpy)2(bpyNO)]2+ has potential as a light-induced oxidizer.

15.
ACS Cent Sci ; 6(7): 1189-1198, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32724853

RESUMO

Heterogeneous catalysts in the form of atomically dispersed metals on a support provide the most efficient utilization of the active component, which is especially important for scarce and expensive late transition metals. These catalysts also enable unique opportunities to understand reaction pathways through detailed spectroscopic and computational studies. Here, we demonstrate that atomically dispersed iridium sites on indium tin oxide prepared via surface organometallic chemistry display exemplary catalytic activity in one of the most challenging electrochemical processes, the oxygen evolution reaction (OER). In situ X-ray absorption studies revealed the formation of IrV=O intermediate under OER conditions with an Ir-O distance of 1.83 Å. Modeling of the reaction mechanism indicates that IrV=O is likely a catalyst resting state, which is subsequently oxidized to IrVI enabling fast water nucleophilic attack and oxygen evolution. We anticipate that the applied strategy can be instrumental in preparing and studying a broad range of atomically dispersed transition metal catalysts on conductive oxides for (photo)electrochemical applications.

16.
Angew Chem Int Ed Engl ; 59(32): 13502-13505, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32369663

RESUMO

Hypervalent FeV =O species are implicated in a multitude of oxidative reactions of organic substrates, as well as in catalytic water oxidation, a reaction crucial for artificial photosynthesis. Spectroscopically characterized FeV species are exceedingly rare and, so far, were produced by the oxidation of Fe complexes with peroxy acids or H2 O2 : reactions that entail breaking of the O-O bond to form a FeV =O fragment. The key FeV =O species proposed to initiate the O-O bond formation in water oxidation reactions remained undetected, presumably due to their high reactivity. Here, we achieved freeze quench trapping of six coordinated [FeV =O,(OH)(Pytacn)]2+ (Pytacn=1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane) (2) generated during catalytic water oxidation. X-ray absorption spectroscopy (XAS) confirmed the FeV oxidation state and the presence of a FeV =O bond at ≈1.60 Å. Combined EPR and DFT methods indicate that 2 contains a S=3/2 FeV center. 2 is the first spectroscopically characterized high spin oxo-FeV complex and constitutes a paradigmatic example of the FeV =O(OH) species proposed to be responsible for catalytic water oxidation reactions.

17.
Commun Biol ; 3(1): 13, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31925322

RESUMO

Photosynthetic efficiency depends on equal light energy conversion by two spectrally distinct, serially-connected photosystems. The redox state of the plastoquinone pool, located between the two photosystems, is a key regulatory signal that initiates acclimatory changes in the relative abundance of photosystems. The Chloroplast Sensor Kinase (CSK) links the plastoquinone redox signal with photosystem gene expression but the mechanism by which it monitors the plastoquinone redox state is unclear. Here we show that the purified Arabidopsis and Phaeodactylum CSK and the cyanobacterial CSK homologue, Histidine kinase 2 (Hik2), are iron-sulfur proteins. The Fe-S cluster of CSK is further revealed to be a high potential redox-responsive [3Fe-4S] center. CSK responds to redox agents with reduced plastoquinone suppressing its autokinase activity. Redox changes within the CSK iron-sulfur cluster translate into conformational changes in the protein fold. These results provide key insights into redox signal perception and propagation by the CSK-based chloroplast two-component system.


Assuntos
Cloroplastos/metabolismo , Histidina Quinase/metabolismo , Ferro/metabolismo , Oxirredução , Enxofre/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ativação Enzimática , Histidina Quinase/química , Ferro/química , Fotossíntese , Conformação Proteica , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade , Enxofre/química
18.
J Am Chem Soc ; 142(2): 884-893, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31865704

RESUMO

Artificial photosynthesis could promise abundant, carbon-neutral energy, but implementation is currently limited by a lack of control over the multi-electron catalysis of water oxidation. Discoveries of the most active catalysts still rely heavily on serendipity. [Ru(tpy)(bpy)(H2O)]2+ (1; bpy = 2,2'-bipyridine, tpy = 2,2';6',2″-terpyridine) is representative of the largest known class of water oxidation catalysts. We undertook an extensive spectroscopic analysis of the prototypical 1 water oxidation catalyst and its fastest known analog [Ru(EtO-tpy)(bpy)(H2O)]2+ (2), capable of 10 times faster water oxidation, to investigate the mechanism of action and factors controlling catalytic activity. EPR and resonance Raman spectroscopy did not detect the proposed [RuV═O] intermediate in 1 and 2 but indicated the possible formation of N-oxides. A lag phase was observed prior to O2 evolution, suggesting catalyst modification before the onset of catalysis. The reactive intermediate [Ru(tpy)(bpy-NO)(H2O)]2+ (1-NO; bpy-NO = 2,2'-bipyridine-N-oxide) proposed by combined spectroscopic and DFT analysis was de novo synthesized and demonstrated 100-fold greater catalytic activity than 1. Thus, in situ transient formation of small amounts of the Ru complex with N-oxide ligands can significantly activate single-site Ru-based catalysts. Furthermore, the rate of O2 evolution was found to correlate with the redox potential of the ligand. This observation might assist with rational design of new catalysts.

19.
Angew Chem Int Ed Engl ; 58(45): 16124-16129, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31489757

RESUMO

A mononuclear nonheme manganese(IV)-oxo complex binding the Ce4+ ion, [(dpaq)MnIV (O)]+ -Ce4+ (1-Ce4+ ), was synthesized by reacting [(dpaq)MnIII (OH)]+ (2) with cerium ammonium nitrate (CAN). 1-Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI-MS, resonance Raman, XANES, and EXAFS, showing an Mn-O bond distance of 1.69 Šwith a resonance Raman band at 675 cm-1 . Electron-transfer and oxygen atom transfer reactivities of 1-Ce4+ were found to be greater than those of MnIV (O) intermediates binding redox-inactive metal ions (1-Mn+ ). This study reports the first example of a redox-active Ce4+ ion-bound MnIV -oxo complex and its spectroscopic characterization and chemical properties.

20.
J Phys Chem Lett ; 10(17): 5284-5291, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31419136

RESUMO

The biological generation of oxygen by the oxygen-evolving complex (OEC) in photosystem II (PS II) is one of nature's most important reactions. The OEC is a Mn4Ca cluster that has multiple Mn-O-Mn and Mn-O-Ca bridges and binds four water molecules. Previously, binding of an additional oxygen was detected in the S2 to S3 transition. Here we demonstrate that early binding of the substrate oxygen to the five-coordinate Mn1 center in the S2 state is likely responsible for the S2 high-spin EPR signal. Substrate binding in the Mn1-OH form explains the prevalence of the high-spin S2 state at higher pH and its low-temperature conversion into the S3 state. The given interpretation was confirmed by X-ray absorption spectroscopic measurements, DFT, and broken symmetry DFT calculations of structures and magnetic properties. Structural, electronic, and spectroscopic properties of the high-spin S2 state model are provided and compared with the available S3 state models. New interpretation of the high-spin S2 state opens opportunity for analysis of factors controlling the oxygen substrate binding in PS II.


Assuntos
Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Magnetismo , Manganês/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Ligação Proteica , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA