Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1514(1): 82-92, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35596717

RESUMO

Aging is accompanied by difficulties in auditory information processing, especially in more complex sound environments. Choir singing requires efficient processing of multiple sound features and could, therefore, mitigate the detrimental effects of aging on complex auditory encoding. We recorded auditory event-related potentials during passive listening of sounds in healthy older adult (≥ 60 years) choir singers and nonsinger controls. We conducted a complex oddball condition involving encoding of abstract regularities in combinations of pitch and location features, as well as in two simple oddball conditions, in which only either the pitch or spatial location of the sounds was varied. We analyzed change-related mismatch negativity (MMN) and obligatory P1 and N1 responses in each condition. In the complex condition, the choir singers showed a larger MMN than the controls, which also correlated with better performance in a verbal fluency test. In the simple pitch and location conditions, the choir singers had smaller N1 responses compared to the control subjects, whereas the MMN responses did not differ between groups. These results suggest that regular choir singing is associated both with more enhanced encoding of complex auditory regularities and more effective adaptation to simple sound features.


Assuntos
Potenciais Evocados Auditivos , Canto , Estimulação Acústica/métodos , Idoso , Envelhecimento , Percepção Auditiva/fisiologia , Encéfalo , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Humanos
2.
Sci Rep ; 9(1): 16883, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729399

RESUMO

Human ancient DNA studies have revealed high mobility in Europe's past, and have helped to decode the human history on the Eurasian continent. Northeastern Europe, especially north of the Baltic Sea, however, remains less well understood largely due to the lack of preserved human remains. Finland, with a divergent population history from most of Europe, offers a unique perspective to hunter-gatherer way of life, but thus far genetic information on prehistoric human groups in Finland is nearly absent. Here we report 103 complete ancient mitochondrial genomes from human remains dated to AD 300-1800, and explore mtDNA diversity associated with hunter-gatherers and Neolithic farmers. The results indicate largely unadmixed mtDNA pools of differing ancestries from Iron-Age on, suggesting a rather late genetic shift from hunter-gatherers towards farmers in North-East Europe. Furthermore, the data suggest eastern introduction of farmer-related haplogroups into Finland, contradicting contemporary genetic patterns in Finns.


Assuntos
Cruzamentos Genéticos , DNA Antigo/análise , DNA Mitocondrial/análise , Migração Humana , Herança Materna/genética , População Branca/genética , Agricultura , DNA Mitocondrial/genética , Europa (Continente) , Fazendeiros/estatística & dados numéricos , Fazendas , Finlândia , Genoma Mitocondrial/genética , História Antiga , Migração Humana/história , Humanos , Ferro , Oceanos e Mares
3.
Nature ; 570(7760): 182-188, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168093

RESUMO

Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas.


Assuntos
Genoma Humano/genética , Migração Humana/história , Ásia/etnologia , DNA Antigo/análise , Europa (Continente)/etnologia , Pool Gênico , Haplótipos , História do Século XV , História Antiga , História Medieval , Humanos , Indígenas Norte-Americanos , Masculino , Sibéria/etnologia
4.
PLoS One ; 10(7): e0130331, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132657

RESUMO

It has previously been demonstrated that the advance of the Neolithic Revolution from the Near East through Europe was decelerated in the northernmost confines of the continent, possibly as a result of space and resource competition with lingering Mesolithic populations. Finland was among the last domains to adopt a farming lifestyle, and is characterized by substructuring in the form of a distinct genetic border dividing the northeastern and southwestern regions of the country. To explore the origins of this divergence, the geographical patterns of mitochondrial and Y-chromosomal haplogroups of Neolithic and Mesolithic ancestry were assessed in Finnish populations. The distribution of these uniparental markers revealed a northeastern bias for hunter-gatherer haplogroups, while haplogroups associated with the farming lifestyle clustered in the southwest. In addition, a correlation could be observed between more ancient mitochondrial haplogroup age and eastern concentration. These results coupled with prior archeological evidence suggest the genetic northeast/southwest division observed in contemporary Finland represents an ancient vestigial border between Mesolithic and Neolithic populations undetectable in most other regions of Europe.


Assuntos
Evolução Molecular , Variação Genética , Cromossomos Humanos Y/genética , Europa (Continente) , Europa Oriental , Genoma Mitocondrial , Humanos
5.
Investig Genet ; 1(1): 9, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21092342

RESUMO

BACKGROUND: Factors affecting the success of short tandem repeat (STR) amplification of poorly preserved samples are generally known, but as of yet, they have seldom been systematically assessed. Using two different maximum likelihood-based methods, the relative importance of DNA quantity, degradation and inhibition in STR genotyping was studied with DNA extracts from a set of old bone samples. First, the effects of different factors related to PCR amplification were estimated with a generalized linear mixed model. Second, error rates of allelic drop-out and drop-in were estimated on the basis of the frequency and nature of mismatches between replicates. RESULTS: In autosomal STR analyses, the most important factor was the DNA quantity, followed by the degradation, whereas in Y-chromosomal STR analysis, the most important factor was the degradation. Inhibition was a minor concern in STR analyses of poorly preserved bones. CONCLUSIONS: The success of PCR amplification depends largely on the template DNA quality (amount and degradation), but these problems can be partly compensated for by different primer design and amplification chemistry. Consequently, the relative roles of the compromising factors differ according to the kit used.

6.
J Biol Chem ; 279(15): 14746-51, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14736891

RESUMO

An NADH-dependent l-xylulose reductase and the corresponding gene were identified from the yeast Ambrosiozyma monospora. The enzyme is part of the yeast pathway for l-arabinose catabolism. A fungal pathway for l-arabinose utilization has been described previously for molds. In this pathway l-arabinose is sequentially converted to l-arabinitol, l-xylulose, xylitol, and d-xylulose and enters the pentose phosphate pathway as d-xylulose 5-phosphate. In molds the reductions are NADPH-linked, and the oxidations are NAD(+)-linked. Here we show that in A. monospora the pathway is similar, i.e. it has the same two reduction and two oxidation reactions, but the reduction by l-xylulose reductase is not performed by a strictly NADPH-dependent enzyme as in molds but by a strictly NADH-dependent enzyme. The ALX1 gene encoding the NADH-dependent l-xylulose reductase is strongly expressed during growth on l-arabinose as shown by Northern analysis. The gene was functionally overexpressed in Saccharomyces cerevisiae and the purified His-tagged protein characterized. The reversible enzyme converts l-xylulose to xylitol. It also converts d-ribulose to d-arabinitol but has no activity with l-arabinitol or adonitol, i.e. it is specific for sugar alcohols where, in a Fischer projection, the hydroxyl group of the C-2 is in the l-configuration and the hydroxyl group of C-3 is in the d-configuration. It also has no activity with C-6 sugars or sugar alcohols. The K(m) values for l-xylulose and d-ribulose are 9.6 and 4.7 mm, respectively. To our knowledge this is the first report of an NADH-linked l-xylulose reductase.


Assuntos
Arabinose/metabolismo , NAD/química , Desidrogenase do Álcool de Açúcar/química , Ascomicetos/enzimologia , Northern Blotting , Cromatografia Líquida de Alta Pressão , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Biblioteca Gênica , Histidina/química , Cinética , Dados de Sequência Molecular , NAD/metabolismo , Oxigênio/metabolismo , Via de Pentose Fosfato , Pentosefosfatos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Álcoois Açúcares/química , Fatores de Tempo , Xilulose/química
7.
FEMS Yeast Res ; 3(2): 185-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12702451

RESUMO

The fungal pathway for L-arabinose catabolism converts L-arabinose to D-xylulose 5-phosphate in five steps. The intermediates are, in this order: L-arabinitol, L-xylulose, xylitol and D-xylulose. Only some of the genes for the corresponding enzymes were known. We have recently identified the two missing genes for L-arabinitol 4-dehydrogenase and L-xylulose reductase and shown that overexpression of all the genes of the pathway in Saccharomyces cerevisiae enables growth on L-arabinose. Under anaerobic conditions ethanol is produced from L-arabinose, but at a very low rate. The reasons for the low rate of L-arabinose fermentation are discussed.


Assuntos
Arabinose/metabolismo , Etanol/metabolismo , Pentosefosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Fermentação/fisiologia , Oxirredução , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
8.
Biochemistry ; 41(20): 6432-7, 2002 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-12009906

RESUMO

The fungal L-arabinose pathway consists of five enzymes, aldose reductase, L-arabinitol 4-dehydrogenase, L-xylulose reductase, xylitol dehydrogenase, and xylulokinase. All the genes encoding the enzymes of this pathway are known except for that of L-xylulose reductase (EC 1.1.1.10). We identified a gene encoding this enzyme from the filamentous fungus Trichoderma reesei (Hypocrea jecorina). The gene was named lxr1. It was overexpressed in the yeast Saccharomyces cerevisiae, and the enzyme activity was confirmed in a yeast cell extract. Overexpression of all enzymes of the L-arabinose pathway in S. cerevisiae led to growth of S. cerevisiae on L-arabinose; i.e., we could show that the pathway is active in a heterologous host. The lxr1 gene encoded a protein with 266 amino acids and a calculated molecular mass of 28 428 Da. The LXRI protein is an NADPH-specific reductase. It has activity with L-xylulose, D-xylulose, D-fructose, and L-sorbose. The highest affinity is toward L-xylulose (K(m) = 16 mM). In the reverse direction, we found activity with xylitol, D-arabinitol, D-mannitol, and D-sorbitol. It requires a bivalent cation for activity. It belongs to the protein family of short chain dehydrogenases. The enzyme is catalytically similar and homologous in sequence to a D-mannitol:NADP 2-dehydrogenase (EC 1.1.1.138).


Assuntos
Arabinose/metabolismo , Genes Fúngicos , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/isolamento & purificação , Trichoderma/enzimologia , Trichoderma/genética , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Vetores Genéticos/síntese química , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Desidrogenase do Álcool de Açúcar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA