Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496418

RESUMO

DEAD-box RNA helicases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box helicases unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.

2.
Cancers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38539466

RESUMO

The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.

3.
Chem Commun (Camb) ; 57(60): 7445-7448, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34232232

RESUMO

G-quadruplex DNA interacts with the N-terminal intrinsically disordered domain of the DEAD-box helicase Ded1p, diminishing RNA unwinding activity but enhancing liquid-liquid phase separation of Ded1p in vitro and in cells. The data highlight multifaceted effects of quadruplex DNA on an enzyme with intrinsically disordered domains.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quadruplex G , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/química , Citoplasma/metabolismo , RNA Helicases DEAD-box/química , DNA/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase , Domínios Proteicos , RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
4.
Nat Commun ; 11(1): 5574, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149109

RESUMO

Liquid-liquid phase separation (LLPS) of proteins that leads to formation of membrane-less organelles is critical to many biochemical processes in the cell. However, dysregulated LLPS can also facilitate aberrant phase transitions and lead to protein aggregation and disease. Accordingly, there is great interest in identifying small molecules that modulate LLPS. Here, we demonstrate that 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and similar compounds are potent biphasic modulators of protein LLPS. Depending on context, bis-ANS can both induce LLPS de novo as well as prevent formation of homotypic liquid droplets. Our study also reveals the mechanisms by which bis-ANS and related compounds modulate LLPS and identify key chemical features of small molecules required for this activity. These findings may provide a foundation for the rational design of small molecule modulators of LLPS with therapeutic value.


Assuntos
Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/farmacologia , Grânulos Citoplasmáticos/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Transição de Fase , Naftalenossulfonato de Anilina/toxicidade , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Citosol/metabolismo , Células HCT116 , Heparina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poli A/química , Domínios Proteicos/genética
5.
RNA ; 26(5): 541-549, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014999

RESUMO

The PI3K/Akt/mTOR kinase pathway is extensively deregulated in human cancers. One critical node under regulation of this signaling axis is eukaryotic initiation factor (eIF) 4F, a complex involved in the control of translation initiation rates. eIF4F-dependent addictions arise during tumor initiation and maintenance due to increased eIF4F activity-generally in response to elevated PI3K/Akt/mTOR signaling flux. There is thus much interest in exploring eIF4F as a small molecule target for the development of new anticancer drugs. The DEAD-box RNA helicase, eIF4A, is an essential subunit of eIF4F, and several potent small molecules (rocaglates, hippuristanol, pateamine A) affecting its activity have been identified and shown to demonstrate anticancer activity in vitro and in vivo in preclinical models. Recently, a number of new small molecules have been reported as having the capacity to target and inhibit eIF4A. Here, we undertook a comparative analysis of their biological activity and specificity relative to the eIF4A inhibitor, hippuristanol.


Assuntos
Antineoplásicos/química , Fator de Iniciação 4A em Eucariotos/química , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Esteróis/química , Antineoplásicos/farmacologia , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos de Epóxi/química , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4F em Eucariotos/química , Humanos , Macrolídeos/química , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Esteróis/farmacologia , Serina-Treonina Quinases TOR/genética , Tiazóis/química
7.
J Mol Biol ; 429(23): 3730-3742, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29037760

RESUMO

DDX3X is a conserved DEAD-box RNA helicase involved in translation initiation and other processes of RNA metabolism. Mutations in human DDX3X and deregulation of its expression are linked to tumorigenesis and intellectual disability. The protein is also targeted by diverse viruses. Previous studies demonstrated helicase and NTPase activities for DDX3X, but important biochemical features of the enzyme remain unclear. Here, we systematically characterize enzymatic activities of human DDX3X and compare these to its closely related Saccharomyces cerevisiae ortholog Ded1p. We show that DDX3X, like Ded1p, utilizes exclusively adenosine triphosphates to unwind helices, oligomerizes to function as efficient RNA helicase, and does not unwind DNA duplexes. The ATPase activity of DDX3X is markedly stimulated by RNA and weaker by DNA, although DNA binds to the enzyme. For RNA unwinding, DDX3X shows a greater preference than Ded1p for substrates with unpaired regions 3' to the duplex over those with 5' unpaired regions. DDX3X separates longer RNA duplexes faster than Ded1p and is less potent than Ded1p in facilitating strand annealing. Our results reveal that the biochemical activities of human DDX3X are typical for DEAD-box RNA helicases, but diverge quantitatively from its highly similar S. cerevisiae ortholog Ded1p.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Hidrólise
8.
Elife ; 52016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27494274

RESUMO

Eukaryotic translation initiation involves two conserved DEAD-box RNA helicases, eIF4A and Ded1p. Here we show that S. cerevisiae eIF4A and Ded1p directly interact with each other and simultaneously with the scaffolding protein eIF4G. We delineate a comprehensive thermodynamic framework for the interactions between Ded1p, eIF4A, eIF4G, RNA and ATP, which indicates that eIF4A, with and without eIF4G, acts as a modulator for activity and substrate preferences of Ded1p, which is the RNA remodeling unit in all complexes. Our results reveal and characterize an unexpected interdependence between the two RNA helicases and eIF4G, and suggest that Ded1p is an integral part of eIF4F, the complex comprising eIF4G, eIF4A, and eIF4E.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Mapas de Interação de Proteínas , RNA Fúngico/metabolismo
9.
Mol Cell ; 59(4): 541-52, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26212457

RESUMO

Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single-stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand-separating protomer and those bound to the single-stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities.


Assuntos
RNA Helicases DEAD-box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/química , Biocatálise , RNA Helicases DEAD-box/fisiologia , Hidrólise , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , RNA de Cadeia Dupla/química , Proteínas de Saccharomyces cerevisiae/fisiologia
10.
Biochemistry ; 53(2): 423-33, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24367975

RESUMO

DEAD-box RNA helicases bind and remodel RNA and RNA-protein complexes in an ATP-dependent fashion. Several lines of evidence suggest that DEAD-box RNA helicases can also form stable, persistent complexes with RNA in a process referred to as RNA clamping. The molecular basis of RNA clamping is not well understood. Here we show that the yeast DEAD-box helicase Ded1p forms exceptionally long-lived complexes with RNA and the nonhydrolyzable ATP ground-state analogue ADP-BeFx or the nonhydrolyzable ATP transition state analogue ADP-AlFx. The complexes have lifetimes of several hours, and neither nucleotide nor Mg(2+) is released during this period. Mutation of arginine 489, which stabilizes the transition state, prevents formation of long-lived complexes with the ATP transition state analogue, but not with the ground state analogue. We also show that two other yeast DEAD-box helicases, Mss116p and Sub2p, form comparably long-lived complexes with RNA and ADP-BeFx. Like Ded1p, Mss116p forms long-lived complexes with ADP-AlFx, but Sub2p does not. These data suggest that the ATP transition state might vary for distinct DEAD-box helicases, or that the transition state triggers differing RNA binding properties in these proteins. In the ATP ground state, however, all tested DEAD-box helicases establish a persistent grip on RNA, revealing an inherent capacity of the enzymes to function as potent, ATP-dependent RNA clamps.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Nucleotídeos/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , RNA/química , Saccharomyces cerevisiae/enzimologia
11.
Plant Cell ; 25(7): 2573-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23903319

RESUMO

Orthodox seeds are capable of withstanding severe dehydration. However, in the dehydrated state, Asn and Asp residues in proteins can convert to succinimide residues that can further react to predominantly form isomerized isoAsp residues upon rehydration (imbibition). IsoAsp residues can impair protein function and can render seeds nonviable, but PROTEIN ISOASPARTYL METHYLTRANSFERASE (PIMT) can initiate isoAsp conversion to Asp residues. The proteins necessary for translation upon imbibition in orthodox seeds may be particularly important to maintain in an active state. One such protein is the large, multidomain protein, Arabidopsis thaliana PLANT RNA HELICASE75 (PRH75), a DEAD-box helicase known to be susceptible to isoAsp residue accumulation. However, the consequences of such isomerization on PRH75 catalysis and for the plant are unknown. Here, it is demonstrated that PRH75 is necessary for successful seed development. It acquires isoAsp rapidly during heat stress, which eliminates RNA unwinding (but not rewinding) competence. The repair by PIMT is able to restore PRH75's complex biochemical activity provided isoAsp formation has not led to subsequent, destabilizing conformational alterations. For PRH75, an important enzymatic activity associated with translation would be eliminated unless rapidly repaired by PIMT prior to additional, deleterious conformational changes that would compromise seed vitality and germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , Ácido Isoaspártico/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dicroísmo Circular , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Estabilidade Enzimática , Teste de Complementação Genética , Temperatura Alta , Humanos , Ácido Isoaspártico/genética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Desnaturação de Ácido Nucleico , Plantas Geneticamente Modificadas , Conformação Proteica , RNA/química , RNA/genética , RNA/metabolismo , Sementes/genética , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
J Mol Biol ; 425(20): 3839-45, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23702290

RESUMO

In eukaryotes, cellular levels of adenosine monophosphate (AMP) signal the metabolic state of the cell. AMP concentrations increase significantly upon metabolic stress, such as glucose deprivation in yeast. Here, we show that several DEAD-box RNA helicases are sensitive to AMP, which is not produced during ATP hydrolysis by these enzymes. We find that AMP potently inhibits RNA binding and unwinding by the yeast DEAD-box helicases Ded1p, Mss116p, and eIF4A. However, the yeast DEAD-box helicases Sub2p and Dbp5p are not inhibited by AMP. Our observations identify a subset of DEAD-box helicases as enzymes with the capacity to directly link changes in AMP concentrations to RNA metabolism.


Assuntos
Monofosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Metabolismo Energético , Ativação Enzimática/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
13.
Biochim Biophys Acta ; 1829(8): 884-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23416748

RESUMO

DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , RNA/genética , RNA/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Mamíferos , Dados de Sequência Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA