Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(3): 3092-3122, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284032

RESUMO

Many different industries, including the pharmaceutical, medical engineering, clinical diagnostic, public safety, and food monitoring industries, use gas sensors. The inherent qualities of nanomaterials, such as their capacity to chemically or physically adsorb gas, and their great ratio of surface to volume make them excellent candidates for use in gas sensing technology. Additionally, the nanomaterial-based gas sensors have excellent selectivity, reproducibility, durability, and cost-effectiveness. This Review article offers a summary of the research on gas sensor devices based on nanomaterials of various sizes. The numerous nanomaterial-based gas sensors, their manufacturing procedures and sensing mechanisms, and most recent advancements are all covered in detail. In addition, evaluations and comparisons of the key characteristics of gas sensing systems made from various dimensional nanomaterials were done.

2.
ACS Omega ; 8(48): 45188-45207, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075770

RESUMO

Stroke is a serious public health problem that raises expenses for society and causes long-term impairment and death. However, due to restricted blood-brain barrier (BBB) penetration, there are few treatment alternatives for treating stroke. Recanalization techniques, neuroprotective medications, and recovery techniques are all forms of treatment. The ischemic stroke treatment window is too narrow for logical and efficient therapy, and detection is possible only in advanced stages. BBB integrity disruption, neurotoxicity, and the brief half-life of therapeutic thrombolytics are the key molecular pathogenic causes of ischemic stroke. Existing neuroprotective drugs' inability to promote the recovery of ischemic brain tissue after a stroke is another factor that contributes to the disease's progression, chronic nature, and severity. A possible approach to getting around these medication restrictions and boosting the effectiveness of therapies is nanotechnology. In order to get around these drug-related restrictions and boost the effectiveness of therapies for neurological conditions such as stroke, nanotechnology has emerged as a viable option. These problems might be avoided by using nanoparticle-based methods to create a thrombolytic medication that is safe to use after the tissue plasminogen activator (tPA) treatment window has passed. The idea of using biomimetic nanoparticles in the future for the treatment of ischemic stroke through immunotherapy and stem cell therapy is highlighted, along with recent advancements in the study of nanomaterials for ischemic stroke diagnostics and treatment.

3.
ACS Appl Bio Mater ; 6(11): 4814-4827, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37886889

RESUMO

Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.


Assuntos
Antibacterianos , Infecções Bacterianas , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lipopolissacarídeos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização , Macrófagos , Inflamação
4.
Ann Med Surg (Lond) ; 85(6): 2617-2627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363609

RESUMO

The present study was designed to investigate the anti-inflammatory potential of Amycolatopsis thermoflava producing 1-O-methyl chrysophanol (OMC), a member of the hydroxyanthraquinone family. The anti-inflammatory potential was evaluated initially through in silico analysis against tumor necrosis factor- α and cyclooxygenase-2. The same activity was further confirmed based on the in vitro protein denaturation method as well as in vivo by a carrageenan-induced paw edema model in rats. The OMC compound was isolated, purified, and characterized from the fermentation broth of Amycoloptosis thermoflava. In vitro data revealed that the OMC possesses significant protein denaturation properties with an IC50 of 63.50±2.19 µg/ml higher than the standard drug, with an IC50 value of 71.42±0.715 µg/ml. The percentage of inhibition in paw swelling was observed to be 40.03±5.5 in OMC-treated group, which is comparable to the standard group (52.8±4.7). The histopathological evaluation and immunohistochemistry revealed the anti-inflammatory potential of OMC.

5.
RSC Adv ; 12(27): 17585-17595, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765449

RESUMO

Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.

6.
ACS Omega ; 7(19): 16616-16628, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601325

RESUMO

Ag3PO4 nanostructures (APNs) containing silver (Ag metal; of the noble metal families) have the potential to exhibit enzyme-mimetic activity. A nanostructure shape, including its surface facets, can improve the bioactivity of enzyme mimicry, yet the molecular mechanisms remain unclear. Herein, we report facet-dependent peroxidase and oxidase-like activity of APNs with both antibacterial and biofilm degrading properties through the generation of reactive oxygen species. Cubic APNs had superior antibacterial effects than rhombic dodecahedral shapes when inhibiting Gram-positive and Gram-negative bacterial pathogen proliferation and biofilm degradation. A similar performance was observed for rhombic dodecahedral shapes, being greater than tetrahedral-shaped APNs. The extent of enzyme-mimetic activity is attributed to the facets {100} present in cubic APNs that led the peroxide radicals to inhibit the proliferation of bacteria and degrade biofilm. These facets were compared to rhombic dodecahedral APNs {110} and tetrahedral APNs {111}, respectively, to reveal a facet-dependent enhanced antibacterial activity, providing a plausible mechanism for shape-dependent APNs material enzyme-mimetic effects on bacteria. Thus, our research findings can provide a direction to optimize bactericidal materials using APNs in clinically relevant applications.

7.
Nanomedicine (Lond) ; 16(24): 2175-2188, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547916

RESUMO

Aim: Monitoring minimal residual disease remains a challenge to the effective medical management of hematological malignancies; yet surface-enhanced Raman spectroscopy (SERS) has emerged as a potential clinical tool to do so. Materials & methods: We developed a cell-free, label-free SERS approach using gold nanoparticles (nanoSERS) to classify hematological malignancies referenced against two control cohorts: healthy and noncancer cardiovascular disease. A predictive model was built using machine-learning algorithms to incorporate disease burden scores for patients under standard treatment upon. Results: Linear- and quadratic-discriminant analysis distinguished three cohorts with 69.8 and 71.4% accuracies, respectively. A predictive nanoSERS model correlated (MSE = 1.6) with established clinical parameters. Conclusion: This study offers a proof-of-concept for the noninvasive monitoring of disease progression, highlighting the potential to incorporate nanoSERS into translational medicine.


Cancer patient quality of life is achieved by reassurance from informed doctors using the best clinical tools. Confirming the earliest detection or absence of disease ensures treatment is timely and recovery optimal. Here we show the potential for a new tool to be developed to reassure patients and inform doctors. We examined the 'chemical fingerprints' (Raman spectroscopic profiling) of patient's blood, enhanced by gold nanoparticles with a double-referenced machine learning algorithm. Teaching a machine to learn as it works ensures it is improving how it finds clinically important features in the chemical fingerprint. This helps patients live more confidently with cancer or in cancer recovery. Eventually, once fully trained and translated into a real-world hospital application, this could improve patient outcomes and quality of life.


Assuntos
Neoplasias Hematológicas , Nanopartículas Metálicas , Análise Discriminante , Ouro , Humanos , Análise Espectral Raman
8.
Mol Neurobiol ; 58(9): 4694-4715, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34169443

RESUMO

The unremitting coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) marked a year-long phase of public health adversaries and has severely compromised healthcare globally. Early evidence of COVID-19 noted its impact on the pulmonary and cardiovascular functions, while multiple studies in recent time shed light on its substantial neurological complications, though a comprehensive understanding of the cause(s), the mechanism(s), and their neuropathological outcomes is scarce. In the present review, we conferred evidence of neurological complications in COVID-19 patients and shed light on the SARS-CoV-2 infection routes including the hematogenous, direct/neuronal, lymphatic tissue or cerebrospinal fluid, or infiltration through infected immune cells, while the underlying mechanism of SARS-CoV-2 invasion to the central nervous system (CNS) was also discussed. In an up-to-date manner, we further reviewed the impact of COVID-19 in developing diverse neurologic manifestations associated with CNS, peripheral nervous system (PNS), skeletal muscle, and also pre-existing neurological diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and myasthenia gravis. Furthermore, we discussed the involvement of key factors including age, sex, comorbidity, and disease severity in exacerbating the neurologic manifestations in COVID-19 patients. An outlook of present therapeutic strategies and state of existing challenges in COVID-19 management was also accessed. Conclusively, the present report provides a comprehensive review of COVID-19-related neurological complications and emphasizes the need for their early clinical management in the ongoing COVID-19 pandemic.


Assuntos
COVID-19/complicações , Doenças do Sistema Nervoso/etiologia , Pandemias , SARS-CoV-2/patogenicidade , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes do Sistema Nervoso/epidemiologia , Doenças Autoimunes do Sistema Nervoso/etiologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Sistema Nervoso Central/virologia , Criança , Comorbidade , Feminino , Humanos , Sistema Imunitário/virologia , Inflamação , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Doenças Musculares/etiologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças Neurodegenerativas/complicações , Neurônios/virologia , Especificidade de Órgãos , Fatores Sexuais , Viremia/induzido quimicamente , Viremia/imunologia , Internalização do Vírus
9.
ACS Appl Bio Mater ; 3(2): 869-880, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019289

RESUMO

Recently, the design of a theranostics system has involved increasing attention in the area of biomedical applications. In many cases, the intricate synthesis process of upconversion nanoparticle-based composite materials limits the use of theranostics applications. To address this challenge, a nanocomposite has been successfully fabricated by the conjugation of magnetic NaGdF4:Yb/Er nanoparticles as an imaging agent and MIL-53(Fe) as a drug carrier through a single step. Simultaneously, folic acid is encapsulated on the surface of the nanocomposite by conjugation chemistry to achieve the targeted drug delivery applications. The synthesized nanocomposite exhibits a sufficient amount of loading ability toward the model anticancer doxorubicin and possesses pH-responsive drug release. The functionalized nanocomposite not only possesses excellent colloidal stability and good magnetic and fluorescence property but also shows superior biocompatibility, strong tumor cell growth inhibitory effect, and cancer-enhanced cellular uptake. It is expected that the synthesized nanocomposite can also serve as a platform for both T1 and T2 MRI contrast agents.

10.
Sci Rep ; 9(1): 6198, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996286

RESUMO

Microbial infections due to biofilms on medical implants can be prevented by antimicrobial coatings on biomaterial surfaces. Mesoporous silica nanoparticles (MSNPs) were synthesized via base-catalyzed sol-gel process at room temperature, functionalized with phenazine-1-carboxamide (PCN) and characterized by UV-visible, FT-IR, DLS, XRD spectroscopic techniques, SEM, TEM, TGA and BET analysis. Native MSNPs, PCN and PCN-MSNPs were evaluated for anti-Candida minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), Candida albicans (C. albicans) biofilms and C. albicans-Staphylococcus aureus (S. aureus) polymicrobial biofilm inhibition. PCN-MSNPs were four-fold effective (MIC 3.9 µg mL-1; 17.47 µM) and MFC (7.8 µg mL-1; 34.94 µM) as compared to pure PCN (MIC 15.6 µg mL-1; 69.88 µM) and MFC (31.2 µg mL-1; 139.76 µM). PCN-MSNPs inhibited in vitro C. albicans MTCC 227-S. aureus MTCC 96 biofilms at very low concentration (10 µg mL-1; 44.79 µM) as compared to pure PCN (40 µg mL-1; 179.18 µM). Mechanistic studies revealed that PCN induced intracellular ROS accumulation in C. albicans MTCC 227, S. aureus MTCC 96 and S. aureus MLS-16 MTCC 2940, reduction in total ergosterol content, membrane permeability, disruption of ionic homeostasis followed by Na+, K+ and Ca2+ leakage leading to cell death in C. albicans MTCC 227 as confirmed by confocal laser scanning micrographs. The silicone urethral catheters coated with PCN-MSNPs (500 µg mL-1; 2.23 mM) exhibited no formation of C. albicans MTCC 227 - S. aureus MTCC 96 and C. albicans MTCC 227 - S. aureus MLS -16 MTCC 2940 biofilms. This is the first report on PCN-MSNPs for use as antimicrobial coatings against microbial adhesion and biofilm formation on silicone urethral catheters.


Assuntos
Anti-Infecciosos/uso terapêutico , Materiais Revestidos Biocompatíveis/química , Controle de Infecções/métodos , Nanopartículas/química , Cateteres Urinários , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/uso terapêutico , Testes de Sensibilidade Microbiana , Nanopartículas/uso terapêutico , Fenazinas/química , Dióxido de Silício/química , Silicones , Staphylococcus aureus/efeitos dos fármacos , Cateteres Urinários/microbiologia
11.
Mol Pharm ; 15(7): 2698-2713, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29787277

RESUMO

Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Engenharia Química , Receptores ErbB/metabolismo , Feminino , Ouro/química , Humanos , Nanopartículas Metálicas/química , Camundongos Nus , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Porosidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Dióxido de Silício/química , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ACS Biomater Sci Eng ; 4(9): 3434-3449, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435077

RESUMO

Therapeutic agents harboring both wound healing and antibacterial activities have much demand in biomedical applications. Development of such candidates with clinically approved materials adds more advantages toward these applications. Recently, silver metal complex nanomaterials have been playing a major role in medical uses especially for antibacterial activity and wound healing. In this report, we designed and synthesized silver nitroprusside complex nanoparticles (abbreviated as AgNNPs) using sodium nitroprusside and silver nitrate (both are FDA approved precursors). The nanoparticles (AgNNPs) were thoroughly characterized by various physicochemical techniques such as XRD, FTIR, TGA, DLS, EDAX, Raman, ICP-OES, HRTEM, and FESEM. The cell viability assay in normal cells (EA.hy 926 cells, NIH 3T3) using MTT reagents and CEA assay (CEA: Chick embryo angiogenesis assay) in fertilized eggs demonstrate the biocompatibility of AgNNPs. These nanoparticles show effective antibacterial activity against both Gram positive and Gram negative bacteria through membrane and DNA damage. Additionally, AgNNPs accelerate the wound healing in C57BL6 mice by altering the macrophages from M1 to M2. Considering the results together, the current study may offer the development of new silver nanocomplex nanomaterials that shows synergistic effect on antibacterial activity and wound healing (2-in-1-system). To the best of our knowledge, this is the first report for the synthesis, characterization, and biomedical applications of silver nitroprusside nanoparticles.

13.
Mol Pharm ; 12(12): 4214-25, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26505213

RESUMO

Akt overexpression in cancer causes resistance to traditional chemotherapeutics. Silencing Akt through siRNA provides new therapeutic options; however, poor in vivo siRNA pharmacokinetics impede translation. We demonstrate that acidic milieu-sensitive multilamellar gold niosomes (Nio-Au) permit targeted delivery of both Akt-siRNA and thymoquinone (TQ) in tamoxifen-resistant and Akt-overexpressing MCF7 breast cancer cells. Octadecylamine groups of functionalized gold nanoparticles impart cationic attribute to niosomes, stabilized through polyethylene glycol. TQ's aqueous insolubility renders its encapsulation within hydrophobic core, and negatively charged siRNA binds in hydrophilic region of cationic niosomes. These niosomes were exploited to effectively knockdown Akt, thereby sensitizing cells to TQ. Immunoblot studies revealed enhanced apoptosis by inducing p53 and inhibiting MDM2 expression, which was consistent with in vivo xenograft studies. This innovative strategy, using Nio-Au to simultaneously deliver siRNA (devoid of any chemical modification) and therapeutic drug, provides an efficacious approach for treating therapy-resistant cancers with significant translational potential.


Assuntos
Benzoquinonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ouro/administração & dosagem , Nanopartículas/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Tamoxifeno/farmacologia
14.
Sci Rep ; 5: 11760, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26145450

RESUMO

Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.


Assuntos
Antineoplásicos Fitogênicos/química , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Paclitaxel/química , Óxido de Zinco/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Feminino , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Paclitaxel/administração & dosagem , Paclitaxel/toxicidade , Transplante Heterólogo
15.
J Mater Chem B ; 3(1): 90-101, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261929

RESUMO

Single drug therapies for cancer are often suboptimal and may not provide long term clinical benefits. To overcome this obstacle for effective treatment the applications of two or more drugs are preferable. A limitation of multidrug use is the varying pharmacokinetics of different drugs. To overcome these impediments, we designed and synthesized multi-layered polyvinyl alcohol tethered hollow manganese ferrite nanocarriers capable of encapsulating two drugs with unique attributes of sensitivity towards tumor acidic milieu, mono-dispersive, compactness and high encapsulation efficiency. We encapsulated tamoxifen and diosgenin in the peripheral and subsequent inner layers of multilayered nanocarriers. In vitro and in vivo studies evaluated the nanocarrier uptake and retention ability of the tumor through magnetic saturation studies and elucidated the molecular mechanisms mediating drug(s)-induced apoptosis. The acidity of the tumor environment triggers extracellular dissociation of the peripheral coats resulting in release of tamoxifen blocking the estrogen receptor. The partially degraded nanocarriers localize intracellularly through endosomal escape and release diosgenin. Nanocarrier treatment reduced the cellular levels of Bcl2 and p53, while increasing the levels of Bim. This delivery system successfully embodies the sequential release of drugs and may provide a therapeutic strategy for sequentially affecting multiple targets in advanced cancers.

16.
ACS Appl Mater Interfaces ; 5(11): 5232-8, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23730930

RESUMO

Recently, photoresponsive nanoparticles have received significant attention because of their ability to provide spatial and temporal control over the drug release. In the present work, we report for the first time photoresponsive multifunctional magnetic nanoparticles (MNPs) fabricated using coumarin-based phototrigger and Fe/Si MNPs for controlled delivery of anticancer drug chlorambucil. Further, newly fabricated photoresponsive multifunctional MNPs were also explored for cell luminescence imaging. In vitro biological studies revealed that coumarin tethered Fe/Si MNPs of ~9 nm size efficiently delivered the anticancer drug chlorambucil into cancer cells and thereby improving the drug action to kill the cancer cells upon irradiation. Such multifunctional MNPs with strong fluorescence, good biocompatibility and efficient photocontrolled drug release ability will be of great benefit in the construction of light-activated multifunctional nano drug delivery systems.


Assuntos
Antineoplásicos Alquilantes/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Clorambucila/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Himecromona/análogos & derivados , Nanopartículas Metálicas/química , Antineoplásicos Alquilantes/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Clorambucila/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Himecromona/química , Himecromona/farmacocinética , Luz , Campos Magnéticos , Nanopartículas Metálicas/efeitos da radiação , Microscopia Eletrônica de Transmissão , Processos Fotoquímicos , Raios Ultravioleta
17.
Sci Technol Adv Mater ; 13(4): 045008, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877508

RESUMO

Water-soluble carbon dots (C-dots) were prepared through microwave-assisted pyrolysis of an aqueous solution of dextrin in the presence of sulfuric acid. The C-dots produced showed multicolor luminescence in the entire visible range, without adding any surface-passivating agent. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed the graphitic nature of the carbon and the presence of hydrophilic groups on the surface, respectively. The formation of uniformly distributed C-dots and their luminescent properties were, respectively, revealed from transmission electron microscopy and confocal laser scanning microscopy. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on MDA-MB-468 cells and their cellular uptake was assessed through a localization study.

18.
Biomaterials ; 32(15): 3794-806, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21392822

RESUMO

Celecoxib has shown potential anticancer activity against most carcinomas, especially in patients with familial adenomatous polyposis and precancerous disease of the colon. However, serious side effects of celecoxib restrict its generalized use for cancer therapy. In order to resolve these issues and develop an alternative strategy/preliminary approach, chitosan modified hydroxyapatite nanocarriers-mediated celecoxib delivery represents a viable strategy. We characterized the nanoparticle for morphology, particle size, zeta potential, crystalinity, functional group analysis, entrapment efficiency, drug release and hemocompatibility. The effects of celecoxib-loaded nanoparticles on colon cancer cell proliferation, morphology, cytoskeleton, cellular uptake and apoptosis were analysed in vitro. Further, we evaluated the antiproliferative, apoptotic and tumor inhibitory efficacy of celecoxib-loaded nanocarriers in a nude mouse human xenograft model. Nanoparticles exhibited small, narrow hydrodynamic size distributions, hemocompatibility, high entrapment efficiencies and sustained release profiles. In vitro studies showed significant antiproliferation, apoptosis and time-dependent cytoplasmic uptake of celecoxib-loaded Hap-Cht nanoparticles in HCT 15 and HT 29 colon cancer cells. Additional in vivo studies demonstrated significantly greater inhibition of tumor growth following treatment with this modified nanoparticle system. The present study indicates a promising, effective and safe means of using celecoxib, and potentially other therapeutic agents for colon cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/química , Neoplasias do Colo/tratamento farmacológico , Durapatita/química , Nanocompostos/química , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , Antineoplásicos/uso terapêutico , Celecoxib , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Citoesqueleto/efeitos dos fármacos , Células HT29 , Humanos , Camundongos , Camundongos Nus , Nanocompostos/ultraestrutura , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico
19.
Nanoscale ; 2(12): 2631-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20959924

RESUMO

Needle shaped nanoparticles of hydroxyapatite (HA) have been synthesized at room temperature using orthophosphoric acid as the source of (PO4)3- ions, while calcium chloride, the calcium source, is suitably complexed with citric acid/tartaric acid/acetic acid. The presence of ligands inhibits the growth along [001] and [100] directions of the crystal and thus, helps in formation of needle shaped nanoparticles. The chemical compositions of the samples have been established through AAS and FTIR spectroscopy, while the crystallinity has been assessed through XRD and by the spectral changes in the υ1 and υ3 frequencies of the phosphate group in the respective FTIR spectra. The particle sizes of the samples have been determined from line broadening studies and correlations have been established between the curve fitted percentage area of FTIR and full width half height (FWHH) of the XRD peaks. TEM studies revealed the particle to be needle-shaped with a length and diameter in the range of 20-65 nm and 4-11 nm respectively. Changes in the surface charge of the water dispersed HA samples have been determined at different pH and the isoelectric point for the samples have been found in the range of 3.1-3.4. Finally, the morphology, surface area and hemocompatibility characteristics of the HA samples, prepared by using different complexing agents, have been compared.


Assuntos
Durapatita/síntese química , Nanopartículas/química , Durapatita/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA