Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Free Radic Biol Med ; 193(Pt 2): 657-668, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36400326

RESUMO

The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-ß peptide (Aß) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aß ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aß in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aß physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aß interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Óxido Nítrico , Peptídeos beta-Amiloides/genética , Transdução de Sinais , GMP Cíclico
3.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36104275

RESUMO

Implantation of guide cannulas is a widely used technique to access specific brain areas. Although commercially available, the need to personalize these implants and the high cost prompted us to design open-source customized devices taking advantage of 3D printing technology. Our cannulas consisted in a 3D-printed head mount designed according to the Paxinos coordinates to reach the CA1 area of the hippocampus. To cut guide cannulas to the proper length, we designed and realized an original 3D-printed linear motion apparatus. Polylactic acid thermoplastic polymer was used as printing material. Homemade or commercial cannulas were implanted in 4- to 6-month-old wild-type mice and intrahippocampal injections of amyloid-ß peptide at different concentrations were performed. In vivo behavioral studies of novel object recognition indicated that results obtained with homemade versus commercial devices were comparable. Methylene blue injections and Nissl staining confirmed the correct localization of cannulas in the CA1 area of mouse hippocampus. Our method allows a fast manufacturing of hippocampal cannulas preserving the required precision at very low cost. Furthermore, this system can be easily modified to produce cannulas to target other brain areas. In conclusion, 3D printing might be used as a useful and versatile technology to realize open-source customized devices in neuroscience laboratories.


Assuntos
Cânula , Azul de Metileno , Animais , Hipocampo , Camundongos , Peptídeos , Polímeros , Impressão Tridimensional
5.
J Alzheimers Dis ; 85(3): 1343-1356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34924388

RESUMO

BACKGROUND: Object recognition task (ORT) is a widely used behavioral paradigm to assess memory in rodent models, due to its easy technical execution, the lack of aversive stressful stimuli, and the possibility to repeat the test on the same animals. However, mouse exploration might be strongly influenced by a variety of variables. OBJECTIVE: To study whether innate preferences influenced exploration in male and female wild type mice and the Alzheimer's disease (AD) model 3xTg. METHODS: We first evaluated how object characteristics (material, size, and shape) influence exploration levels, latency, and exploration modality. Based on these findings, we evaluated whether these innate preferences biased the results of ORT performed in wild type mice and AD models. RESULTS: Assessment of Exploration levels, i.e., the time spent in exploring a certain object in respect to the total exploration time, revealed an innate preference for objects made in shiny materials, such as metal and glass. A preference for bigger objects characterized by higher affordance was also evident, especially in male mice. When performing ORT, exploration was highly influenced by these innate preferences. Indeed, both wild type and AD mice spent more time in exploring the metal object, regardless of its novelty. Furthermore, the use of objects with higher affordance such as the cube was a confounding factor leading to "false" results that distorted ORT interpretation. CONCLUSION: When designing exploration-based behavioral experiments aimed at assessing memory in healthy and AD mice, object characteristics should be carefully evaluated to improve scientific outcomes and minimize possible biases.


Assuntos
Doença de Alzheimer/psicologia , Comportamento Exploratório/fisiologia , Apego ao Objeto , Percepção Visual/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
6.
Prog Neurobiol ; 206: 102154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453977

RESUMO

The accumulation of amyloid-beta peptide (Aß) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aß contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aß physiological function and promotes a compensatory increase in Aß levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aß levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3ß at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aß and tau pathology, offering a different perspective to interpret the failure of anti-Aß therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aß function at the synapse.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta , Camundongos , Fragmentos de Peptídeos/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
7.
Front Mol Neurosci ; 14: 684977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211368

RESUMO

The main goal of scientific research is to uncover new knowledge to understand reality. In the field of life sciences, the aim of translational research-to transfer results "from bench to bedside"-has to contend with the problem that the knowledge acquired at the "bench" is often not reproducible at the "bedside," raising the question whether scientific discoveries truly mirror the real world. As a result, researchers constantly struggle to overcome the dichotomy between methodological problems and expectations, as funding agencies and industries demand expandable and quick results whereas patients, who are uninterested in the epistemological dispute, only ask for an effective cure. Despite the numerous attempts made to address reproducibility and reliability issues, some essential pitfalls of scientific investigations are often overlooked. Here, we discuss some limitations of the conventional scientific method and how researcher cognitive bias and conceptual errors have the potential to steer an experimental study away from the search for the vera causa of a phenomenon. As an example, we focus on Alzheimer's disease research and on some problems that may have undermined most of the clinical trials conducted to investigate it.

8.
Neurobiol Stress ; 14: 100286, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392367

RESUMO

Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic-pituitary-adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder.

9.
Front Pharmacol ; 12: 809541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002742

RESUMO

Depression is a risk factor for the development of Alzheimer's disease (AD). A neurobiological and clinical continuum exists between AD and depression, with neuroinflammation and oxidative stress being involved in both diseases. Second-generation antidepressants, in particular selective serotonin reuptake inhibitors (SSRIs), are currently investigated as neuroprotective drugs in AD. By employing a non-transgenic AD model, obtained by intracerebroventricular (i.c.v.) injection of amyloid-ß (Aß) oligomers in 2-month-old C57BL/6 mice, we recently demonstrated that the SSRI fluoxetine (FLX) and the multimodal antidepressant vortioxetine (VTX) reversed the depressive-like phenotype and memory deficits induced by Aß oligomers rescuing the levels of transforming growth factor-ß1 (TGF-ß1). Aim of our study was to test FLX and VTX for their ability to prevent oxidative stress in the hippocampus of Aß-injected mice, a brain area strongly affected in both depression and AD. The long-term intraperitoneal (i.p.) administration of FLX (10 mg/kg) or VTX (5 and 10 mg/kg) for 24 days, starting 7 days before Aß injection, was able to prevent the over-expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase 2 (Nox2) induced by Aß oligomers. Antidepressant pre-treatment was also able to rescue the mRNA expression of glutathione peroxidase 1 (Gpx1) antioxidant enzyme. FLX and VTX also prevented Aß-induced neurodegeneration in mixed neuronal cultures treated with Aß oligomers. Our data represent the first evidence that the long-term treatment with the antidepressants FLX or VTX can prevent the oxidative stress phenomena related to the cognitive deficits and depressive-like phenotype observed in a non-transgenic animal model of AD.

10.
J Clin Invest ; 130(9): 4831-4844, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544084

RESUMO

The amyloid hypothesis posits that the amyloid-beta (Aß) protein precedes and requires microtubule-associated protein tau in a sort of trigger-bullet mechanism leading to Alzheimer's disease (AD) pathology. This sequence of events has become dogmatic in the AD field and is used to explain clinical trial failures due to a late start of the intervention when Aß already activated tau. Here, using a multidisciplinary approach combining molecular biological, biochemical, histopathological, electrophysiological, and behavioral methods, we demonstrated that tau suppression did not protect against Aß-induced damage of long-term synaptic plasticity and memory, or from amyloid deposition. Tau suppression could even unravel a defect in basal synaptic transmission in a mouse model of amyloid deposition. Similarly, tau suppression did not protect against exogenous oligomeric tau-induced impairment of long-term synaptic plasticity and memory. The protective effect of tau suppression was, in turn, confined to short-term plasticity and memory. Taken together, our data suggest that therapies downstream of Aß and tau together are more suitable to combat AD than therapies against one or the other alone.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Potenciação de Longa Duração , Sinapses/metabolismo , Transmissão Sináptica , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Camundongos , Camundongos Knockout , Sinapses/genética , Sinapses/patologia , Proteínas tau/genética
11.
Front Pharmacol ; 10: 693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293421

RESUMO

Depression is a risk factor for the development of Alzheimer's disease (AD), and the presence of depressive symptoms significantly increases the conversion of mild cognitive impairment (MCI) into AD. A long-term treatment with antidepressants reduces the risk to develop AD, and different second-generation antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are currently being studied for their neuroprotective properties in AD. In the present work, the SSRI fluoxetine and the new multimodal antidepressant vortioxetine were tested for their ability to prevent memory deficits and depressive-like phenotype induced by intracerebroventricular injection of amyloid-ß (1-42) (Aß1-42) oligomers in 2-month-old C57BL/6 mice. Starting from 7 days before Aß injection, fluoxetine (10 mg/kg) and vortioxetine (5 and 10 mg/kg) were intraperitoneally injected daily for 24 days. Chronic treatment with fluoxetine and vortioxetine (both at the dose of 10 mg/kg) was able to rescue the loss of memory assessed 14 days after Aß injection by the passive avoidance task and the object recognition test. Both antidepressants reversed the increase in immobility time detected 19 days after Aß injection by forced swim test. Vortioxetine exerted significant antidepressant effects also at the dose of 5 mg/kg. A significant deficit of transforming growth factor-ß1 (TGF-ß1), paralleling memory deficits and depressive-like phenotype, was found in the hippocampus of Aß-injected mice in combination with a significant reduction of the synaptic proteins synaptophysin and PSD-95. Fluoxetine and vortioxetine completely rescued hippocampal TGF-ß1 levels in Aß-injected mice as well as synaptophysin and PSD-95 levels. This is the first evidence that a chronic treatment with fluoxetine or vortioxetine can prevent both cognitive deficits and depressive-like phenotype in a non-transgenic animal model of AD with a key contribution of TGF-ß1.

12.
Cell Signal ; 62: 109338, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176021

RESUMO

α7 nicotinic acetylcholine receptors (α7nAChRs) have been targeted to improve cognition in different neurological and psychiatric disorders. Nevertheless, no α7nAChR activating ligand has been clinically approved. Here, we investigated the effects of antagonizing α7nAChRs using the selective antagonist methyllycaconitine (MLA) on receptor activity in vitro and cognitive functioning in vivo. Picomolar concentrations of MLA significantly potentiated receptor responses in electrophysiological experiments mimicking the in vivo situation. Furthermore, microdialysis studies showed that MLA administration substantially increased hippocampal glutamate efflux which is related to memory processes. Accordingly, pre-tetanus administration of low MLA concentrations produced longer lasting potentiation (long-term potentiation, LTP) in studies examining hippocampal plasticity. Moreover, low doses of MLA improved acquisition, but not consolidation memory processes in rats. While the focus to enhance cognition by modulating α7nAChRs lies on agonists and positive modulators, antagonists at low doses should provide a novel approach to improve cognition in neurological and psychiatric disorders.


Assuntos
Aconitina/análogos & derivados , Cognição/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/genética , Aconitina/metabolismo , Aconitina/farmacologia , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Memória/fisiologia , Antagonistas Nicotínicos/farmacologia , Ratos , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
13.
Mol Neurodegener ; 14(1): 26, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248451

RESUMO

BACKGROUND: Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS: This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS: Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS: Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.


Assuntos
Doença de Alzheimer/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Óxido Nítrico/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
14.
J Neurosci ; 39(30): 5986-6000, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127002

RESUMO

Failure of anti-amyloid-ß peptide (Aß) therapies against Alzheimer's disease (AD), a neurodegenerative disorder characterized by high amounts of the peptide in the brain, raised the question of the physiological role of Aß released at low concentrations in the healthy brain. To address this question, we studied the presynaptic and postsynaptic mechanisms underlying the neuromodulatory action of picomolar amounts of oligomeric Aß42 (oAß42) on synaptic glutamatergic function in male and female mice. We found that 200 pm oAß42 induces an increase of frequency of miniature EPSCs and a decrease of paired pulse facilitation, associated with an increase in docked vesicle number, indicating that it augments neurotransmitter release at presynaptic level. oAß42 also produced postsynaptic changes as shown by an increased length of postsynaptic density, accompanied by an increased expression of plasticity-related proteins such as cAMP-responsive element binding protein phosphorylated at Ser133, calcium-calmodulin-dependent kinase II phosphorylated at Thr286, and brain-derived neurotrophic factor, suggesting a role for Aß in synaptic tagging. These changes resulted in the conversion of early into late long-term potentiation through the nitric oxide/cGMP/protein kinase G intracellular cascade consistent with a cGMP-dependent switch from short- to long-term memory observed in vivo after intrahippocampal administration of picomolar amounts of oAß42 These effects were present upon extracellular but not intracellular application of the peptide and involved α7 nicotinic acetylcholine receptors. These observations clarified the physiological role of oAß42 in synaptic function and memory formation providing solid fundamentals for investigating the pathological effects of high Aß levels in the AD brains.SIGNIFICANCE STATEMENT High levels of oligomeric amyloid-ß42 (oAß42) induce synaptic dysfunction leading to memory impairment in Alzheimer's disease (AD). However, at picomolar concentrations, the peptide is needed to ensure long-term potentiation (LTP) and memory. Here, we show that extracellular 200 pm oAß42 concentrations increase neurotransmitter release, number of docked vesicles, postsynaptic density length, and expression of plasticity-related proteins leading to the conversion of early LTP into late LTP and of short-term memory into long-term memory. These effects require α7 nicotinic acetylcholine receptors and are mediated through the nitric oxide/cGMP/protein kinase G pathway. The knowledge of Aß function in the healthy brain might be useful to understand the causes leading to its increase and detrimental effect in AD.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Líquido Extracelular/fisiologia , Memória/fisiologia , Neurotransmissores/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Animais , Líquido Extracelular/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Injeções Intraventriculares , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
17.
Pharmacol Res ; 141: 384-391, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30648615

RESUMO

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D3R increases GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D3R knockout (D3R -/-) mice and wild type littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 activity. At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R-/-; other relevant GABAA subunits were not changed. In situ hybridization and qPCR confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but increased it in D3R-/-; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of D3R-/-, but not in D3R+/+. We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/genética , Neurônios GABAérgicos/patologia , Receptores de Dopamina D3/genética , Receptores de GABA-A/genética , Animais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Subunidades Proteicas/genética , RNA Mensageiro/genética
18.
Front Mol Neurosci ; 11: 353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333723

RESUMO

We have previously demonstrated that activation of serotonin 5-HT7 receptors (5-HT7R) reverses metabotropic glutamate receptor-mediated long term depression (mGluR-LTD) in the hippocampus of wild-type (WT) and Fmr1 Knockout (KO) mice, a model of Fragile X Syndrome (FXS) in which mGluR-LTD is abnormally enhanced. Here, we have investigated intracellular mechanisms underlying the effect of 5-HT7R activation using patch clamp on hippocampal slices. Furthermore, we have tested whether in vivo administration of LP-211, a selective 5-HT7R agonist, can rescue learning and behavior in Fmr1 KO mice. In the presence of an adenylate cyclase blocker, mGluR-LTD was slightly enhanced in WT and therefore the difference between mGluR-LTD in WT and Fmr1 KO slices was no longer present. Conversely, activation of adenylate cyclase by either forskolin or Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) completely reversed mGluR-LTD in WT and Fmr1 KO. 5-HT7R activation reversed mGluR-LTD in WT and corrected exaggerated mGluR-LTD in Fmr1 KO; this effect was abolished by blockade of either adenylate cyclase or protein kinase A (PKA). Exposure of hippocampal slices to LP-211 caused an increased phosphorylation of extracellular signal regulated kinase (ERK), an intracellular effector involved in mGluR-LTD, in WT mice. Conversely, this effect was barely detectable in Fmr1 KO mice, suggesting that 5-HT7R-mediated reversal of mGluR-LTD does not require ERK stimulation. Finally, an acute in vivo administration of LP-211 improved novel object recognition (NOR) performance in WT and Fmr1 KO mice and reduced stereotyped behavior in Fmr1 KO mice. Our results indicate that mGluR-LTD in WT and Fmr1 KO slices is bidirectionally modulated in conditions of either reduced or enhanced cAMP formation. Activation of 5-HT7 receptors reverses mGluR-LTD by activation of the cAMP/PKA intracellular pathway. Importantly, a systemic administration of a 5-HT7R agonist to Fmr1 KO mice corrected learning deficits and repetitive behavior. We suggest that selective 5-HT7R agonists might become novel pharmacological tools for FXS therapy.

19.
Neurobiol Aging ; 71: 51-60, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092511

RESUMO

The increase of oligomeric amyloid-beta (oAß) has been related to synaptic dysfunction, thought to be the earliest event in Alzheimer's disease pathophysiology. Conversely, the suppression of endogenous Aß impaired synaptic plasticity and memory, suggesting that the peptide is needed in the healthy brain. However, different species, aggregation forms and concentrations of Aß might differently influence synaptic function/dysfunction. Here, we have tested the contribution of monomeric and oligomeric Aß42 and Aß40 at 200 nM and 200 pM concentrations on hippocampal long-term potentiation and spatial memory. We found that, when at 200 nM, oAß40, oAß42, and monomeric Aß42 impaired long-term potentiation and memory, whereas only oAß42 200 pM enhanced synaptic plasticity and memory and rescued the detrimental effect due to depletion of endogenous Aß. Interestingly, quantification of monomer-like and oligomer-like species carried out by transmission electron microscopy revealed an increase of the monomer/oligomer ratio in the oAß42 200 pM preparation, suggesting that the content of monomers and oligomers depends on the final concentration of the solution.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração , Fragmentos de Peptídeos/fisiologia , Memória Espacial/fisiologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/administração & dosagem , Agregados Proteicos , Isoformas de Proteínas/administração & dosagem , Isoformas de Proteínas/fisiologia , Memória Espacial/efeitos dos fármacos
20.
Neuropharmacology ; 138: 151-159, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885420

RESUMO

Cyclic nucleotides cAMP and cGMP cooperate to ensure memory acquisition and consolidation. Increasing their levels by phosphodiesterase inhibitors (PDE-Is) enhanced cognitive functions and rescued memory loss in different models of aging and Alzheimer's disease (AD). However, side effects due to the high doses used limited their application in humans. Based on previous studies suggesting that combinations of sub-efficacious doses of cAMP- and cGMP-specific PDE-Is improved synaptic plasticity and memory in physiological conditions, here we aimed to study whether this treatment was effective to counteract the AD phenotype in APPswe mice. We found that a 3-week chronic treatment with a combination of sub-efficacious doses of the cAMP-specific PDE4-I roflumilast (0.01 mg/kg) and the cGMP-specific PDE5-I vardenafil (0.1 mg/kg) improved recognition, spatial and contextual fear memory. Importantly, the cognitive enhancement persisted for 2 months beyond administration. This long-lasting action, and the possibility to minimize side effects due to the low doses used, might open feasible therapeutic strategies against AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminopiridinas/farmacologia , Benzamidas/farmacologia , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Dicloridrato de Vardenafila/farmacologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Memória/fisiologia , Camundongos Transgênicos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA