Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 16(1): 96, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569150

RESUMO

BACKGROUND: Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. RESULTS: To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem clusters of pikromycin biosynthetic gene clusters. CONCLUSIONS: The 60 kb pikromycin biosynthetic gene cluster was isolated in a single integration pSBAC vector. Introduction of the pikromycin biosynthetic gene cluster into the pikromycin non-producing strains resulted in higher pikromycin production. The utility of the pSBAC system as a precise cloning tool for large-sized biosynthetic gene clusters was verified through heterologous expression of the pikromycin biosynthetic gene cluster. Moreover, this pSBAC-driven heterologous expression strategy was confirmed to be an ideal approach for production of low and inconsistent natural products such as pikromycin in S. venezuelae, implying that this strategy could be employed for development of a custom overexpression scheme of natural product biosynthetic gene clusters in actinomycetes.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Macrolídeos/metabolismo , Família Multigênica/genética , Streptomyces/genética , Clonagem Molecular , Streptomyces/metabolismo
2.
Front Microbiol ; 8: 394, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360891

RESUMO

Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.

3.
J Ind Microbiol Biotechnol ; 44(4-5): 555-561, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27734184

RESUMO

Tautomycetin (TMC) is a natural product with a linear structure that includes an ester bond connecting a dialkylmaleic moiety to a type I polyketide chain. Although TMC was originally identified as an antifungal antibiotic in the late 1980s, follow-up studies revealed its novel immunosuppressant activity. Specifically, TMC exhibited a mechanistically unique immunosuppressant activity about 100 times higher than that of cyclosporine A, a widely used immunosuppressant drug. Interestingly, a structurally close relative, tautomycin (TTM), was reported to not possess TMC-like immunosuppressant activity, suggesting that a distinctive polyketide moiety of TMC plays a critical role in immunosuppressant activity. Cloning and engineering of a TMC polyketide biosynthetic gene cluster generated several derivatives showing different biological activities. TMC was also found to be biosynthesized as a linear structure without forming a lactone ring, unlike the most polyketide-based compounds, implying the presence of a unique polyketide thioesterase in the cluster. Although TMC biosynthesis was limited due to its tight regulation by two pathway-specific regulatory genes located in the cluster, its production was significantly stimulated through homologous and heterologous expression of its entire biosynthetic gene cluster using a Streptomyces artificial chromosome vector system. In this mini-review, we summarize recent advances in the biosynthesis, regulation, and pathway engineering of a linear polyketide, TMC, in Streptomyces sp. CK4412.


Assuntos
Regulação Bacteriana da Expressão Gênica , Imunossupressores/química , Lipídeos/biossíntese , Streptomyces/química , Streptomyces/genética , Antifúngicos/química , Cromossomos Artificiais Bacterianos/genética , Furanos/química , Genes Reguladores , Lipídeos/química , Microrganismos Geneticamente Modificados , Família Multigênica , Policetídeos/química , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA