Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 551, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642170

RESUMO

Fish health management is critical to aquaculture and fisheries as it directly affects sustainability and productivity. Fish disease diagnosis has taken a massive stride because of advances in immunological and molecular diagnostic tools which provide a sensitive, quick, and accurate means of identifying diseases. This review presents an overview of the main molecular and immunological diagnostic methods for determining the health of fish. The immunological techniques help to diagnose different fish diseases by detecting specific antigens and antibodies. The application of immunological techniques to vaccine development is also examined in this review. The genetic identification of pathogens is made possible by molecular diagnostic techniques that enable the precise identification of bacterial, viral, and parasitic organisms in addition to evaluating host reactions and genetic variation associated with resistance to disease. The combination of molecular and immunological methods has resulted in the creation of novel techniques for thorough evaluation of fish health. These developments improve treatment measures, pathogen identification and provide new information about the variables affecting fish health, such as genetic predispositions and environmental stresses. In the framework of sustainable fish farming and fisheries management, this paper focuses on the importance of these diagnostic techniques that play a crucial role in protecting fish populations and the aquatic habitats. This review also examines the present and potential future directions in immunological and molecular diagnostic techniques in fish health.


Assuntos
Aquicultura , Doenças dos Peixes , Animais , Pesqueiros , Anticorpos , Técnicas de Diagnóstico Molecular , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/genética , Peixes/genética
2.
Fish Shellfish Immunol ; 103: 454-463, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32439512

RESUMO

In the present study, early uptake of nervous necrosis virus (NNV) in the tissues (gill, brain, skin, eye, heart) and immune response associated with the uptake in the gill and brain of seven-band grouper was investigated. The gill was found to act as a primary portal of entry for NNV during the initial phase of the water-borne infection. The presence of viral genome and infectious particles was demonstrated using quantitative (qPCR, viral titer) and qualitative (ISH) approach. Initially, an increased viral uptake was noticed, but the virus got cleared from the gills at the later phase of infection. Localization in the brain was evident at the blood-brain barrier followed by the brain parenchyma in the latter stage of infection. Nectin-4, an established NNV receptor, and GHSC70 showed an up-regulated expression throughout the challenge period initially in the gill and at latter phase in brain; however, it seems that the virus does not use gill as a primary replication site but brain as a permissive tissue. Combined activity as reflected by the up-regulation of cytokine, interferon, antigen-presenting cell, and immunoglobulin genes restricts early NNV replication in gill. Observations from the present study provide a better understanding of early NNV entry and also opens a window for further elucidating the modes of NNV neuro-invasion through systemic circulation.


Assuntos
Bass , Doenças dos Peixes/imunologia , Imunidade , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Animais , Encéfalo/virologia , Doenças dos Peixes/virologia , Brânquias/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia
3.
Virus Res ; 273: 197738, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493437

RESUMO

Viral hemorrhagic septicemia (VHS) causes serious economic loss in olive flounder aquaculture industry in Korea. Water temperature is known to play a critical role in VHS disease outbreak. Here, we assessed the potential efficacy of VHSV immersion treatment in relation to resistance conferred at differential water temperatures in olive flounder. VHSV acquired resistance was compared between formalin-killed VHSV immersion treatment and live VHSV immersion treatment at three different water temperatures viz., 10 °C, 17 °C, and 20 °C. At 10 °C, cumulative mortality was around 80% in live VHSV immersed group while 30% cumulative mortality was observed in formalin-killed VHSV treated group. After 4 weeks, surviving olive flounder at 17 °C and 20 °C were challenged with VHSV at 10 °C following which the VHS outbreaks took place at host susceptible water temperature. For the pre-treated flounder at 17 °C, survival rates were 80% and 30% after challenge at 10 °C in live VHSV immersed group and formalin-killed VHSV immersed group, respectively. Whereas, the pre-treated flounder at 20 °C showed survival rate of 75% and 20% after challenge at 10 °C in live VHSV immersed group and formalin-killed VHSV immersed group, respectively. Our results propose the fact that live VHSV immersion using non-susceptible water temperature has the potential to protect olive flounder against VHSV infection. Moreover, the protective efficacy of live immersion treatment in a non-excited immune state without the use of an adjuvant combined with water temperature adjustment was investigated for the first time at 17 °C. Further studies should be targeted to explore the host-associated immune factors responsible for the protective effect and acquired resistance in olive flounder after live VHSV immersion treatment.


Assuntos
Doenças dos Peixes/prevenção & controle , Linguado/virologia , Septicemia Hemorrágica Viral/prevenção & controle , Septicemia Hemorrágica Viral/virologia , Temperatura , Fatores Etários , Animais , Suscetibilidade a Doenças/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Septicemia Hemorrágica Viral/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imersão , Novirhabdovirus , República da Coreia , Água
4.
Fish Shellfish Immunol ; 93: 720-725, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31404634

RESUMO

Nectin-4/PVRL4 belonging to the family of immunoglobulin-like cell adhesion molecules was identified as a potential cellular receptor for several animal viruses. Here we show that nervous necrosis virus that causes viral nervous necrosis in teleosts uses the same receptor in its life cycle. Transfection of SSN-1 cell lines with an expression vector encoding Nectin-4 rendered them to be more susceptible to NNV. Immunofluorescence microscopy on Nectin-4 expressing cells revealed that the protein interacted with NNV specifically. A virus binding assay indicated that Nectin-4 was a bonafide receptor that supported virus attachment to the host cell whereas siRNA directed against Nectin-4 blocked NNV infections in grouper primary brain cells. Results of the present study will improve our understanding of the pathogenesis of NNV infection and provide a target for the development of novel antiviral interventions in marine finfish aquaculture.


Assuntos
Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Nectinas/genética , Nectinas/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária
5.
Virus Res ; 267: 16-20, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31054933

RESUMO

Viral hemorrhagic septicemia (VHS) is a cold-water disease caused by viral hemorrhagic septicemia virus (VHSV) at an optimal temperature of 9 °C-15 °C. VHSV isolation and detection have been accomplished by using a number of diagnostic methods such as cell culture and qRT-PCR. Spleen and kidney have been reported as the main target organs of VHSV-infection; however, how VHSV spreads throughout the fish body has not been clearly studied. The purpose of this study was 1) to investigate viral titer and viral RNA copy number in the blood of VHSV-infected olive flounder at 10 °C and 13 °C; 2) to compare VHSV titer and viral RNA copy numbers in blood from fish exposed to the virus by two different challenges. VHSV titer at 10 °C was higher than at 13 °C in blood samples of injection challenged group. Whereas, similar titer was observed at 10 °C and 13 °C in the blood samples of the immersion challenged group. At 10 °C, copy numbers of VHSV-N gene in blood of immersion challenged group increased slightly in comparison to injection challenged group. At 13 °C, similar patterns were observed between the injection and immersion challenged groups. Also, higher titer and copy number were observed in fish blood compared to tested organs from our previous study. Our results indicate that VHSV genome existed in fish blood at earlier time points after infection, and the blood may contribute to the spread of the virus in whole fish body. In addition, VHSV diagnosis by qRT-PCR from fish blood samples, not requiring sacrificing the host fish can be valuable to collect the kinetic information of viral infection.


Assuntos
Doenças dos Peixes/sangue , Doenças dos Peixes/virologia , Linguado/virologia , Dosagem de Genes , Novirhabdovirus/genética , RNA Viral/sangue , Animais , Temperatura Baixa , Doenças dos Peixes/diagnóstico , Genoma Viral , Cinética , Novirhabdovirus/patogenicidade , RNA Viral/genética
6.
Fish Shellfish Immunol ; 91: 136-147, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31096061

RESUMO

Viral haemorrhagic septicaemia virus (VHSV), a (-) ssRNA virus belonging to the genus Novirhabdovirus of rhabdoviridae family, is the aetiological agent of viral haemorrhagic septicaemia (VHS) disease which causes huge economic losses in farmed olive flounder (Paralichthys olivaceus) and significant mortalities among several other marine fish species in Korea, Japan, and China. Previously, we developed an inactivated vaccine viz., formalin-inactivated VHSV mixed with squalene as adjuvant which was effective in conferring protective immunity (58-76% relative percentage survival) against VHSV but the mode of administration was intraperitoneal injection which is not feasible for small sized fingerling fish. To overcome this limitation, we presently focused on replacing the injection route of vaccine delivery by oral and immersion routes. In this context, we encapsulated the inactivated VHSV vaccine with chitosan nanoparticles (CNPs-IV) by water-in-oil (W/O) emulsification method. After encapsulation, two sets of in vivo vaccination trials were conducted viz., preliminary trial-I and final trial-II. In preliminary trial-I, olive flounder fingerlings (10.5 ±â€¯1.7 g) were vaccinated with CNPs-IV by different delivery strategies involving oral and immersion routes (single/booster dose) followed by challenge with VHSV (1 × 106 TCID50 virus/fish) to evaluate an effective method amongst different applied delivery strategies. Subsequently, a final trial-II was conducted to better understand the immune mechanism behind the efficacy of the employed delivery strategy and also to further improvise the delivery mechanism with prime-boost (primary immersion and oral boosting) combination in order to improve the transient anti-VHSV response in the host. Evaluation of RPS analysis in trial-I revealed higher RPS of 46.7% and 53.3% in the CNPs-IV (immersion) and CNPs-IV (immersion/immersion) groups, respectively compared to 0% RPS in the CNPs-IV (oral) group and 20% RPS in the CNPs-IV (oral/oral) group when calculated against 100% cumulative mortality percentage in the NVC (non-vaccinated challenged) control group, whereas, in the trial-II, RPS of 60% and 66.6% were obtained for CNPs-IV (immersion/immersion) and CNPs-IV (immersion/oral) groups, respectively. In addition, specific (anti-VHSV) antibody titre in the fish sera, skin mucus and intestinal mucus of the immunized groups were significantly (p < 0.05) enhanced following vaccination. Furthermore, CNPs-IV immunized fish showed significant (p < 0.05) upregulation of different immune gene transcripts (IgM, IgT, pIgR, MHC-I, MHC-II, IFN-γ, and Caspase3) compared to control, in both the systemic (kidney) and mucosal (skin and intestine) immune compartments of the host post immunization as well as post challenge. To conclude, mucosal immunization with CNPs-IV vaccine can orchestrate an effective immunization strategy in organizing a coordinative immune response against VHSV in olive flounder thereby exhibiting higher protective efficacy to the host with minimum stress.


Assuntos
Quitosana/administração & dosagem , Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Nanopartículas/administração & dosagem , Novirhabdovirus/imunologia , Vacinas Virais/administração & dosagem , Animais , Materiais Biocompatíveis/administração & dosagem , Composição de Medicamentos , Linguados , Linguado , Nanocápsulas , Distribuição Aleatória , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia
7.
Vaccine ; 37(7): 973-983, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30661835

RESUMO

Viral haemorrhagic septicaemia virus (VHSV), an OIE listed viral pathogen, is the etiological agent of a contagious disease, causing huge economic losses in farmed olive flounder (Paralichthys olivaceus) and significant mortalities among several other marine fish species in Korea, Japan, and China. In continuation with our previous work, where injection vaccination with inactivated VHSV mixed with squalene (as adjuvant) conferred higher protective immunity to olive flounder, the present study focused on replacing the injection route of vaccine delivery by immersion/oral route to overcome the limitations of the parenteral immunization method. Here, we encapsulated the inactivated VHSV vaccine with PLGA (poly lactic-co-glycolic acid) nanoparticles (PNPs-IV) and evaluated its ability to induce protective immunity in olive flounder (12.5 ±â€¯1.5 g) by initially immunizing the fishes by immersion route followed by a booster with the same dose two weeks later with half of the fish through immersion route and other half through oral route (incorporated into fish feed). Cumulative mortalities post-challenge (1 × 106 TCID50 virus/fish) with virulent VHSV-isolate, were lower in vaccinated fish and RPS of 60% and 73.3% were obtained for PNPs-IV (immersion/immersion) and PNPs-IV (immersion/oral) groups, respectively. In addition, specific (anti-VHSV) antibody titre in the fish sera, skin mucus and intestinal mucus of the immunized groups were significantly (p < 0.05) enhanced following vaccination. Furthermore, PNPs-IV immunized fish showed significant (p < 0.05) upregulation of different immune gene transcripts (IgM, IgT, pIgR, MHC-I, MHC-II, IFN-γ, and Caspase3) compared to controls, in both the systemic (kidney) and mucosal (skin and intestine) immune compartment of the host post immunization as well as post challenge. Thus it can be inferred that the adopted immunization strategy efficiently protected and transported the inactivated viral antigen to target immune organs and positively stimulated the protective immune response against VHSV in olive flounder.


Assuntos
Portadores de Fármacos/administração & dosagem , Septicemia Hemorrágica Viral/prevenção & controle , Imunidade nas Mucosas , Novirhabdovirus/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Administração através da Mucosa , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Doenças dos Peixes/prevenção & controle , Linguado , Mucosa Intestinal/imunologia , Coreia (Geográfico) , Muco/imunologia , Pele/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
8.
J Virol Methods ; 264: 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414796

RESUMO

An in situ hybridization (RNA-ISH) assay has been developed and optimized to detect viral haemorrhagic septicemia virus (VHSV), an OIE listed piscine rhabdovirus, in infected fish cells using fathead minnow (FHM) as a model cell line. Two antisense riboprobes (RNA probes) targeting viral transcripts from a fragment of nucleoprotein (N) and glycoprotein (G) genes were generated by reverse transcription polymerase chain reaction (RT-PCR) using VHSV specific primers followed by a transcription reaction in the presence of digoxigenin dUTP. The synthesized RNA probes were able to detect viral mRNAs in formalin fixed VHSV infected FHM cells at different time points post inoculation (pi). To correlate the signal intensity, a time dependent quantitation of the viral mRNA transcript and infectivity titer was done by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and 50% tissue culture infectivity dose (TCID50), respectively, from the infected cells and culture supernatants. Further, we compared the diagnostic sensitivity of ISH assay with immunocytochemistry (ICC). Both the riboprobes used in the ISH assay detected VHSV as early as 6 hpi in the FHM cells inoculated with a multiplicity of infection (moi) of 2. Also, the signal detection in ISH was at an early stage in comparison to ICC, wherein, signal was first detected at 12 hpi. Our results clearly highlight that current ISH assay can be of value as a diagnostic tool to localize and detect VHSV in conjunction with conventional virus isolation in cell culture.


Assuntos
Sondas de DNA/genética , Doenças dos Peixes/virologia , Septicemia Hemorrágica/virologia , Hibridização In Situ , RNA Mensageiro/análise , Animais , Técnicas de Cultura de Células , Linhagem Celular , Cyprinidae/virologia , Imuno-Histoquímica , RNA Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA