Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169719, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171456

RESUMO

Blow flies (Calliphoridae) play essential ecological roles in nutrient recycling by consuming decaying organic matter. They serve as valuable bioindicators in ecosystem management and forensic entomology, with their unique feeding behavior leading to the accumulation of environmental pollutants in their cuticular hydrocarbons (CHCs), making them potential indicators of exposure history. This study focuses on CHC degradation dynamics in empty puparia of Lucilia sericata under different environmental conditions for up to 90 days. The three distinct conditions were considered: outdoor-buried, outdoor-above-ground, and indoor environments. Five predominant CHCs, n-Pentacosane (n-C25), n-Hexacosane (n-C26), n-Heptacosane (n-C27), n-Octacosane (n-C28), and n-Nonacosane (n-C29), were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The findings revealed variations in CHC concentrations over time, influenced by environmental factors, with significant differences at different time points. Correlation heatmap analysis indicated negative correlations between weathering time and certain CHCs, suggesting decreasing concentrations over time. Machine learning techniques Support Vector Machine (SVM), Multilayer Perceptron (MLP), and eXtreme Gradient Boosting (XGBoost) models explored the potential of CHCs as age indicators. SVM achieved an R-squared value of 0.991, demonstrating high accuracy in age estimation based on CHC concentrations. MLP also exhibited satisfactory performance in outdoor conditions, while SVM and MLP yielded unsatisfactory results indoors due to the lack of significant CHC variations. After comprehensive model selection and performance evaluations, it was found that the XGBoost model excelled in capturing the patterns in all three datasets. This study bridges the gap between baseline and ecological/forensic use of empty puparia, offering valuable insights into the potential of CHCs in environmental monitoring and investigations. Understanding CHCs' stability and degradation enhances blow flies' utility as bioindicators for pollutants and exposure history, benefiting environmental monitoring and forensic entomology.


Assuntos
Dípteros , Entomologia Forense , Animais , Ecossistema , Biomarcadores Ambientais , Hidrocarbonetos/análise
2.
Forensic Sci Int ; 349: 111748, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301034

RESUMO

Forensic entomology uses the age of insects, such as blow flies, to determine a minimum post-mortem interval (PMImin). Recent research has focused on using the analysis of specific cuticular hydrocarbons (CHCs) in adult insects and their empty puparia to estimate their age, as it has been shown that their profile changes are consistent with age. The current work is based on the weathering of five CHCs from empty puparia of Calliphora vicina that were stored in soil (field/outdoor) and non-soil (room/indoor conditions) based pupariation media for a total of six months. The experiment was conducted in a controlled environment chamber at a constant temperature of 25 ± 2 °C under constant darkness. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the cuticular hydrocarbons after they were extracted in n-Hexane. n-Pentacosane, n-Hexacosane, n-Heptacosane, n-Octacosane, and n-Nonacosane were the five CHCs investigated. Results showed that CHCs weathered more quickly in the soil than in the non-soil environment. It was also found that the abundance of Heptacosane increased in the samples during the fifth month when stored in a non-soil medium, while the abundances of all five CHCs were not detected after eight weeks onwards in soil pupation medium.


Assuntos
Dípteros , Animais , Dípteros/química , Calliphoridae , Hidrocarbonetos/análise , Temperatura , Larva
3.
Heliyon ; 8(12): e12577, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636222

RESUMO

Fungicides are a class of pesticides used to ward off fungal diseases from agricultural crops to achieve maximum productivity. These chemicals are quite efficient in controlling diseases; however, the excessive use of these affects non-target organisms as well. In this study, Bombyx mori was utilized to investigate the effect of the pesticide hexaconazole (HEX) on the antioxidant system of this organism and also to find ways to mitigate it. On oral exposure to this chemical, a significant reduction in antioxidants, CAT, GPX, GSH, and SOD in the gut, fat body, and silk gland was observed. The HEX treatment also resulted in lipid peroxidation (LPO) in all the three tissues. To mitigate this toxicity and protect the silkworm from oxidative stress, we tested three compounds, namely folic acid, ferrocenecarboxaldehyde, and malic acid having known antioxidant potential. Folic acid provided significant protection against HEX-induced toxicity. Ferrocenecarboxaldehyde and malic acid proved to be ill-efficient in controlling oxidative stress, with ferrocenecarboxaldehyde being the least effective of the three. Folic acid was also efficient in controlling LPO up to a considerable level. Ferrocenecarboxaldehyde and malic acid also prevented LPO less efficiently than folic acid. Overall folic acid was the only compound that mitigated HEX-induced oxidative stress in silkworm with statistical significance in all the tissues viz. gut, fat body, and silk gland.

4.
Sci Rep ; 10(1): 1617, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005898

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are used in many applications; however, their interactions with cells, immune cells in particular, and potential health risk(s) are not fully known. In this manuscript, we have demonstrated the potential of ZnO NPs to cross the gut barrier in an invertebrate model, Bombyx mori, and that they can reach the hemolymph where they interact with and/or are taken up by immune-competent cells resulting in various toxic responses like decline in hemocyte viability, ROS generation, morphological alterations, apoptotic cell death, etc. Exposure to these NPs also resulted in alteration of hemocyte dynamics including an immediate increase in THC, possibly due to the release of these hemocytes either from enhanced rate of cell divisions or from attached hemocyte populations, and decline in percentage of prohemocytes and increase in percentage of two professional phagocytes, i.e., granulocytes and plasmatocytes, possibly due to the differentiation of prohemocytes into phagocytes in response to a perceived immune challenge posed by these NPs. Taken together, our data suggest that ZnO NPs have the potential to cross gut barrier and cause various toxic effects that could reverse and the insects could return to normal physiological states as there is restoration and repair of various systems and their affected pathways following the clearance of these NPs from the insect body. Our study also indicates that B. mori has the potential to serve as an effective alternate animal model for biosafety, environmental monitoring and screening of NPs, particularly to evaluate their interactions with invertebrate immune system.


Assuntos
Transporte Biológico/imunologia , Bombyx/imunologia , Sistema Imunitário/imunologia , Invertebrados/imunologia , Nanopartículas Metálicas/administração & dosagem , Óxido de Zinco/imunologia , Animais , Apoptose/imunologia , Diferenciação Celular/imunologia , Divisão Celular/imunologia , Hemócitos/imunologia , Hemolinfa/imunologia , Nanopartículas , Fagócitos/imunologia , Espécies Reativas de Oxigênio/imunologia
5.
J Coll Physicians Surg Pak ; 28(4): 288-291, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29615169

RESUMO

OBJECTIVE: To determine the diagnostic accuracy and cut-off values of serum cystatin C as early diagnostic biomarker of diabetic kidney disease. STUDY DESIGN: Cross-sectional analytical study. PLACE AND DURATION OF STUDY: Department of Pathology, Army Medical College, Rawalpindi in collaboration with Endocrinology Department, Military Hospital (MH), Rawalpindi from November 2015 to November 2016. METHODOLOGY: One hundred and nineteen diagnosed patients of type 2 diabetes mellitus were enrolled in the study from the outpatient Endocrinology Department of the MH Rawalpindi. Fifty disease-free controls were also included. Fasting blood samples of the patients and controls were analysed for creatinine by Jaffé's kinetic method and estimated GFR was calculated using MDRD-based equation for GFR. Serum cystatin C was estimated by quantitative turbidimetric method. RESULTS: Serum cystatin C was higher in the diabetic group (mean = 1.022 ±0.33 mg/dl) as compared to the control group (mean = 0.63 ±0.14 mg/dl). ROC curve analysis, keeping less than 60 ml/min/1.73 m2 GFR (CKD-MDRD based) as reference value of the stat variable/gold standard; revealed an area under the curve of 0.914 (95% CI 0.85-0.98) and at optimal sensitivity of 88.2% and specificity of 84.8% the established cut-off of serum cystatin C was 1.26 mg/L. CONCLUSION: Cystatin C is an accurate biomarker of diabetic kidney disease with good sensitivity and specificity.


Assuntos
Cistatina C/sangue , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/diagnóstico , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
6.
Toxicol Sci ; 134(2): 355-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23697686

RESUMO

Paraquat (PQ), a quaternary nitrogen herbicide, is commonly used as a pesticide despite of its high toxicity. Our study evaluated the effect of subchronic PQ exposure on the neuropathology, genotoxicity, and antioxidant activity on the nervous tissue of Drosophila melanogaster. We also explored the behavioral effect of PQ on D. melanogaster. Furthermore, we attempted to validate the mechanism by evaluating PQ-induced cytotoxicity on the D-Mel2 cell lines. The fruit fly D. melanogaster serves as a feasible model to understand the mechanism of neurodegenerative diseases. Our study shows a dose-dependent PQ-induced neuropathology in the brain tissue of D. melanogaster as evidenced by hematoxylin and eosin staining, silver nitrate staining, and transmission electron microscopy. Electron microscopic study of D. melanogaster brain tissue exhibited vacuolar degeneration and significant neuronal damage across the nervous tissue structure in comparison with control. Our findings also indicate a dose-dependent locomotor impairment and decreased superoxide dismutase (SOD) specific activity in PQ-treated D. melanogaster. These PQ-induced neuroanatomical changes and decreased SOD specific activity showed a significant association with oxidative DNA damage as observed by alkaline comet assay. Additionally, we show, for the first time, a dose-dependent PQ-induced cytotoxicity in the D-Mel2 cells suggesting loss of neuronal cell viability via cytotoxic damage. Our data suggest that PQ exposure results in neurodegeneration in D. melanogaster and that fruit fly is a suitable in vivo model for correlating the neuroanatomical changes with neurotoxic damages to nervous system.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , Herbicidas/toxicidade , Sistema Nervoso/efeitos dos fármacos , Estresse Oxidativo , Paraquat/toxicidade , Animais , Ensaio Cometa , Drosophila melanogaster , Modelos Animais , Sistema Nervoso/ultraestrutura , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA